DERMATOMAL SOMATOSENSORY EVOKED POTENTIALS IN EVALUATION OF LUMBOSACRAL SPINAL CANAL STENOSIS

Thesis

Submitted for Partial Fulfilment of the Requirements of the MD Degree in

Physical Medicine, Rheumatology and Rehabilitation

BY

Eman Ahmed Tawfik

M.B.B.Ch., M.Sc. Physical Medicine, Rheumatology and Rehabilitation
Faculty of Medicine, Ain Shams University

Under Supervision of

Professor Dr. Nadia Abd El-Salam El-Kadrey

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Ain Shams University

Professor Dr. Mona Mahmoud Arafa

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Ain Shams University

Professor Dr. Hossam Mohamed El-Hussiney

Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Dr. Heba Fawzy EL Shishtawy

Assistant Professor in Physical Medicine, Rheumatology and Rehabilitation
Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2009

بسم الله الرحمن الرحيم

ACKNOWLEDGMENTS

First and foremost, thanks to God, the most beneficent and most merciful.

I wish to express my sincere appreciation and deepest gratitude to **Prof. Dr.**, **Nadia Abd El-Salam** Professor of Physical Medicine and Rehabilitation, Faculty of Medicine, Ain Shams University, for her continuous supervision, constructive encouragement, illuminating guidance as well as her support throughout this work.

I am deeply grateful to **Prof. Dr. Mona Arafa**, Professor of Physical Medicine and Rehabilitation, Faculty of Medicine, Ain Shams University, who devoted her time, effort and experience most generously throughout this work and for her help and valuable observations which made it possible to complete this work.

I am greatly honored to express my endless gratitude to **Prof. Dr. Hossam EL-Hossiney**, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for the time he spent and the effort he paid during this work and for his support and cooperation. Also, my great appreciation to the residents of neurosurgery department for their cooperation.

My special gratitude and thanks to **Dr. Heba El Sheshtawy**, Assistant professor of Physical Medicine and Rehabilitation, Faculty of Medicine, Ain Shams University, for her great effort in this work and for the time she spent as well as her beneficial observations.

Last, but not least, my thanks to all my family, colleagues and friends for without their continuous support & encouragement, this work would not have been possible.

Eman A. Tawfik

TABLE OF CONTENTS

INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	5
LUMBAR SPINAL CANAL STENOSIS	5
ELECTRODIAGNOSIS IN RADICULOPTHY AND I	LUMBOS-
ACRAL SPINALCANALSTENOSIS	
DERMATOMAL SOMATOSENSORY AND SOMATO	OSENSORY
EVOKED POTENTIALS	50
TREATMENT	
SUBJECTS AND METHODS	80
RESULTS	115
DISCUSSION	187
SUMMARY AND CONCLUSION	215
RECOMMENDATIONS	219
REFERENCES	220
APPENDIX	239
HISTROY	
PHYSICAL EXAMIANTION	
ROLLAND MORRIS QUESTIONNAIRE	
SWISS SPINAL STENOSIS SCORE	
PROTOCOL(ENGLISH & ARABIC)	
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

ADL Activity of daily living

A-P Antero-posterior

CMAP Compound muscle action potential

CNS Central nervous system

CSF Cerberospinal fluid

CT Computed tomography

DM Diabetes Milletus
DRG Dorsal root ganglia

DSEPs Dermatomal somatosensory evoked potentials

EDX Electrodiagnostic testing
EEG Electroencephalography

EMG Electromyogram
EPs Evoked potentials

ESI Epidural steroid injection

FPSW Fibrillation potentials & positive sharp waves

HS Highly significant

Hz Hertz
Lat. Lateral

LSSS Lumbosacral spinal stensois

mA Milliampere mm Millimeter

MR Magnetic resonance
MRD Multiple root disease

MRI Magnetic resonance imaging

msec Millisecond mV Millivolt

NS Non-significant

NSAIDs Non-steroidal anti-inflammatory drugs

P Probability

PM Paraspinal muscles

r Pearson correlation coefficient

ROM Range of motion

S Significant

SD Standard of deviation

SEPs Sensory evoked potentials

Sig. Significance

SLR Straight leg raising

SNAP Sensory nerve action potential

SNR Signal-noise ratio

SPSS Statistical Package for the Social Sciences

SRD Single root disease

SSEP Somatosensory evoked potentials

SSS Swiss Spinal stenosis Score

t Student t-test

uV Microvolt

V Volt

LIST OF TABLES

No.	Title			
1	Normal and stenotic lumbar spinal canal dimensions	5		
2	Clinical differentiation between neurogenic and vascular claudication	25		
3	Clinical features of lumbosacral radiculopathies	26		
4	Rolland Morris Low Back Pain and Disability Questionnaire	94		
5	Swiss Spinal stenosis Score	97		
6	Sites of dermatomal stimulation	104		
7	Latencies of scalp responses to dermatome and routine SEPs	107		
8	Demographic and clinical data of the patients group	121		
9	Canal diameter in the patients group			
10	Latencies of DSEPs and SEPs in the control group	130		
11	Amplitudes of DSEPs and SEPs in the control group	131		
12	Latencies of DSEPs and SEPs in the patients group	132		
13	Amplitudes of DSEPs and SEPs in the patients group	133		
14	Functional scores in the patients group	150		
15	Comparison of DSEPs latencies between the patients and control groups	151		
16	Comparison of SEPs latencies between the patients and control groups	151		

No.	Title	Page
17	Comparison of DSEPs amplitudes between the patients and control groups	153
18	Comparison of SEPs amplitudes between the patients and control groups	153
19	Comparison between Functional Scores done preoperatively and 3 months postoperatively	155
20	Comparison between DSEPs and SEPs latencies done preoperatively and 1 month postoperatively	156
21	Comparison between DSEPs and SEPs amplitudes done preoperatively and 1 month postoperatively	157
22	Comparison between DSEPs and SEPs latencies done preoperatively and 3 months postoperatively	159
23	Comparison between DSEPs and SEPs amplitudes done preoperatively and 3 months postoperatively	160
24	Comparison between DSEPs and SEPs latencies done 1 month and 3 months postoperatively	161
25	Comparison between DSEPs and SEPs amplitudes done 1 month and 3 months postoperatively	162
26	Correlation between DSEPs, SEPs latencies and each of height and age among the control group	169
27	Correlation between DSEPs, SEPs amplitudes and each of height and age among the control group	176
28	Correlation between DSEPs latencies done preoperatively and different variables in the patients group	177

29	Correlation between SEPs latencies done preoperatively and different variables in the patients group	179
30	Correlation between DSEPs, SEPs latencies and functional scores (3 months postoperative)	181
31	Correlation between DSEPs amplitudes and functional scores (3 months postoperative)	184
32	Correlation between SEPs amplitudes and functional scores (3 months postoperative)	185
33	Correlation between canal diameter at L2-L3, L3-L4 levels and different variables in the patients group	186
34	Correlation between canal diamter at L4-L5, L5-S1 levels and different variables in the patients group	186

LIST OF FIGURES

No.	Title				
1	Spinal canal zones	7			
2	Spinal canal and intervertebral foramen				
3	The lumbar arteries and their branches	11			
4	Tributaries of the lumbar veins	12			
5	The three zones of the lateral spinal canal	14			
6	Entrance zone stenosis secondry to superior articular process hypertrophy	15			
7	Pedicular kinking	16			
8	Motor nerve conduction in nerve root lesion	34			
9	Sensory potentials in lesions distal and proximal to Dorsal Root Ganglia	39			
10	Near field potentials	53			
11	Far field potentials	54			
12	Pathway for Somatosensory Evoked Potentials	57			
13	The different parameters of SSEPs waveform	64			
14	Normal Dermatomal Somatosensory Evoked Potentials	65			
15	Surgical decompression of lumbar stenosis	77			
16	Numerical Pain Scale	85			
17	Sustained Lumbar Provocation Test	87			
18	Interpedicular diameter	90			
19	Sagittal diameter	91			
20	A-P diameter and lateral recess height in CT scan of the lumbar spine	92			

No.	Title	Page
21	Toennies Neuroscreen Plus apparatus	98
22	Active and reference electrodes	100
23	Stimulator electrode	100
24	Ground electrode	101
25	International 10-20 system	102
26	Application of electrodes	102
27	Sites of dermatomal stimulation	105
28	Number and percentage of patients by each decade	116
29	Number and percentage of patients by height	117
30	Number and percentage of patients by disease duration	118
31	Number and percentage of patients by pain scale	119
32	Number and percentage of patients by extension ROM	121
33	Mean canal diameter at different levels	124
34	MRI of a patient showing bilateral L5 root compression	125
35	MRI of a patient showing ligamentum flavum hypertrophy and facet joint arthropathy	126
36	Number and percentage of patients by type of stenosis	127
37	MRI of a patient showing central and lateral canal stenosis	128
38	Agreement of MRI with the clinical and operative findings	129
39	Different responses of SEPs and DSEPs	135
40(A-H)	Samples of SEPs and DSEPs waveforms	136-143

No.	Title	Page
21	Toennies Neuroscreen Plus apparatus	98
No.	Title	Page
41	Agreement of DSEPs with clinical, radiological and operative findings	145
42	L5 root after decompression in one of the patients	147
43	Comparison between cases and control as regard latencies of DSEPs and SEPs	152
44	Comparison between patients and control as regard amplitudes of DSEPs and SEPs	154
45	Comparison between preoperative and 3 months postoperative functional scores	155

LIST OF GRAPHS

No.	Т	itle					Page
1	Comparison between latencies of L3	1st,	2nd	and	3rd	visit	163
2	Comparison between latencies of L4	1st,	2nd	and	3rd	visit	163
3	Comparison between latencies of L5	1st,	2nd	and	3rd	visit	164
4	Comparison between latencies of S1	1st,	2nd	and	3rd	visit	164
5	Comparison between latencies of tibial nerve	1st,	2nd	and	3rd	visit	165
6	Comparison between latencies of peroneal ne		2nd	and	3rd	visit	165
7	Comparison between amplitudes of L3	1st,	2nd	and	3rd	visit	166
8	Comparison between amplitudes of L4	1st,	2nd	and	3rd	visit	166
9	Comparison between amplitudes of L5	1st,	2nd	and	3rd	visit	167
10	Comparison between amplitudes of S1	1st,	2nd	and	3rd	visit	167
11	Comparison between amplitudes of tibial nerv		2nd	and	3rd	visit	168
12	Comparison between amplitudes of peroneal i			and	3rd	visit	168
13	Correlation between Height and Right L3 latency				170		
14	Correlation between Height and Left L3 latency				170		

No.	Title	Page
15	Correlation between Height and Right L4 latency	171
16	Correlation between Height and Left L4 latency	171
17	Correlation between Height and Right L5 latency	172
18	Correlation between Height and Left L5 latency	172
19	Correlation between Height and Right S1 latency	173
20	Correlation between Height and Left S1 latency	173
21	Correlation between Height and Right Tibial latency	174
22	Correlation between Height and Left Tibial latency	174
23	Correlation between Height and Right Peroneal latency	175
24	Correlation between Height and Left Peroneal latency	175
25	Correlation between L3 latency and extension ROM	178
26	Correlation between right L5 latency and Rolland Morris Score	182
27	Correlation between left L3 latency and Symptom Severity Scale	182
28	Correlation between left L3 latency and Physical Function Scale	183
29	Correlation between left L3 latency and Satisfaction Scale	183