ACKNOWLEDGMENTS

The author wishes to express her deep thanks and gratitude to Prof. Dr. Eng. Mohamed Nabil El Awady, Prof. of Ag, Eng., Fac. of Ag., Ain Shams Univ., Prof. Dr. Mahmoud Mohamed Hegazi, Prof. of Ag. Eng., Fac. of Ag., Ain Shams Univ., Dr. Mahmoud Mohamed Ahemed El Bordiny, Associate Prof of Soil. Sci, Fac. of Ag., Ain Shams Univ, and Dr. Ibrahim Yehia El Sayed, Senior Res., Ag. Eng. Res. Inst., for their sincere supervision, continued guidance, valuable advice, help, and encouragement during the execution of this work

The another also would like to thank Prof. Dr. Ibrahim El Naggar., Gemmiza Research Station for helping in soil measurements and his great effort in her research. Also she can not forget the part of the manager of Gemmiza Research through his support.

Thanks are also extended to all who have helped in carrying out this work. Special thanks and deep appreciate extend to her family for their kind encouragement and continuous help.

ABSTRACT

Madiha Saber Ibrahim Ahmed Mira, studies on "Design and Manufacturing of an Injection Machine for Cotton-Stalk Under Soil Surface to Improve Its Properties" Unpublished Doctor of Philosophy, Ain Shams Uni. Ins. Of Environmental Studies and Research (2007).

The aim of this study is to design and test a machine to incorporate crop residues and conserve the environment. Four crop residue feeders were tested (cross fingers, cross claws, spiral fingers and spiral spoon auger), along with four feeder-speeds (20, 30, 40 and 50 rpm), three cotton stalk residue sizes (1, 3, 5 cm) and three furrow depths (20, 30 and 50 cm).

The results of this study were summarized as following:

- The best feeder was spiral spoon at feeder speed of 50 rpm and residues size of 1 cm which gave residues discharge of 456 kg/h.
- At the case of 20 cm depth, with cotton residues incorporation, the mean values of the hydraulic conductivity, infiltration rate and bulk density were 65.50, 39.83, 18.64 cm/h and 77.50, 46.00, 19.80 cm /h and 0.92, 0.93 and 0.90 g/cm³ for 45, 105 and 180 days from *alfalfa*, (*Berseem Tirfolium SP*).
- -The maximum penetration resistance was 85.4 N/ cm2 at soil depth 20 40 cm and crop residues furrow spacing of 1 m.

Meanwhile, the minimum penetration resistance was 58.6 N/ cm² at soil depth 0 - 20 cm and crop residues furrow spacing of 3 m.

-The maximum ground-wheel slip of 4.5 % was obtained with forward speed of 3.6 km/h and soil depth of 50 cm. Meanwhile, the minimum ground-slip wheel of 1.9 % was obtained with forward speed of 1.5 km/h and soil depth of 20 cm.

- The maximum power of 63.49 kW (82.5 hp) was obtained with forward speed of 3.6 km/h and soil depth of 50 cm. Meanwhile, the minimum power of 32.49 kW (42.2 hp) was obtained with forward speed of 1.5 km/h and soil depth of 20 cm.
- The maximum performance of the designed machine of 3.26 fed./h was obtained with using forward speed of 3.6 km/h and residues furrow spacing of 7 m. Meanwhile, The minimum machine-performance of 0.53 fed/h was obtained with using forward speed of 1.5 km/h and residues furrow of 2 m.
- The maximum total alfalfa yield of 43.75 ton/fed was obtained with cotton residues depth of 20 cm. Meanwhile, the minimum yield of 35.8 ton/fed was obtained with depth of 50 cm.
- The increasing of net profit of using the crop residues incorporation machine (at 3-m mulch spacing, 20 mulch depth and 1.5 km/h forward speed) was 922.3 L.E./fed.

CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LIERATURE	3
2.1	Crop residues incorporation methods and machines	3
2.2	Effect of organic residues on soil properties:	8
2.2.1	Soil Physical Prperties.	. 8
2.2.1.1	Penetration resistance of soil.	9
2.2.1.2	Soil bulk density.	9
2.2. 1.3	Hydraulic Conductivity	10
2.2.1.4	Soil aggregation and soil structure	11
2.2.1.5	Soil moisture retention	12
2.2.1.6	Field capacity, wilting point and available water capacity	12
2.3	Soil chemical properties.	13
2.3.1	EC – pH, soluble ions, and organic matter content	13
2.3.1.1	Effect of organic sources on soil pH	13
2.3.1.2	Electrical conductivity	14
23.2	Organic matter content in soil.	15
2. 3.2.1	C/N ratio.	16
2.3.3	Effect of organic materials on chemically available macro	_
	elements	16
2.3.3.1	Available Phosphorus.	16

2.3.3.2	Available Nitrogen.	17
2.3.4	Effect of organic residues on growth and yield	19
3.	MATERIALS AND METHODS	21
3. 1	Materials.	21
3.1.1	The designed machine for incorporating of farm crop residues	21
3.1.1.1	Feeding mechanism of crop residues.	21
3.1.1.1.a	Crop residues hopper.	25
3.1.1.1.b	Feeders Drums	26
3.1.1.2	Ground wheel .	28
3.1.1.3	Motion transmission.	28
3.1.1.4	Crop residue wings and dropping channel.	29
3.1.1.5	Subsoiler.	30
3.1.1.6	Tractor.	31
3. 2	Methods.	31
3.2-1	Laboratory experiments.	31
3.2.2	Field experiment.	31
3.2.3	Analytical methodology.	33
3.2.4	Instrumentation.	38
3-2-5	Effect of forward speed on ground-wheel splip	41
3.2.6	Fuel consumption and power requirement	41
3-2-7	Performance of the machine.	41

3-2-8	Field efficiency.	41
3.2.9	Yield of crop.	42
3.2.4.2	Estimating the costs of using the machine.	42
4.	RESULTS AND DISCUSSION	44
4.1	Laboratory experiments	44
4.1.1	Effects of feeder types, cotton residue-sizes and feeder- speeds on	44
	discharge	
4.1.2	Effect of feeder rotation-direction on residues discharge	45
4.2	Field experiments	47
4.2.1	Effect of incorporation depth of cotton residues on physical and	
	chemical properties of soil	47
4.2.2	Effect of incorporation depth of cotton residues on soil physical	47
	properties	
4.2.2.1	Effect of incorporation depth of cotton residues and residues-size	48
	on penetration stress	
4.2.2.2	Penteration resistitance	48
4.2.2.3	Effects of hydraulic conductivity (H.C), infiltration rate (I.R), total	
	porosity (P %) and bulk density (D _b)	50
4.2.2.3.1	Bulk density and total porosity.	50
4.2.2.3.2	Hydraulic conductivity	51
4.2.2.3.3	Infiltration rate.	52
4.2.2.3.4	Aggregation and aggregate stability	56

4.2.2.3.5	Soil moisture retention	57
4.2.2.3.6	Total porosity and pore size distribution	59
4.3	Effect of incorporation depth of cotton residues on soil some	65
	chemical properties	
4.3.1	Effect of the cotton residues incorporation into soil total	
	and available nitrogen, phosphorus, and potassium	65
4.3.2	Chemical total NPK	65
4.3.3	Chemical available NPK	65
4.4	Effect of forward speed on ground-wheel slip	69
4.5	Effect of forward speed and soil depth on power requirement	70
4.6	Effect of forward speed and soil depth on fuel consumption	72
4.7	Machine performance and field efficiency	72
4.8	Effect of incorporation depth of cotton residues and harvesting	75
	times on berseem crop yield.	
4.9	Estimating of the cost of using the machine	76
4.10	Scientific contributions.	77
5.	SUMMARY AND CONCLUSION.	78
6.	REFERENCES	82
	ARABIC SUMMARY.	

LIST OF TABLES

Table No .		Page
3-1	Total and chemically avilable N,P,and K in the studied	
	soil.and soil moisture contents.	32
3-2	Properties of the cotton stalk residues.	34
3-3	Physical and chemical properties of the studied soil	36
4-1	Effect of feeder types, cotton residues-sizes and feeder-speeds	45
	on discharge at clockwise feed ration	
4-2	Effect of cotton residue-sizes and feeder-speeds on discharge	47
	of spiral-spoons feeder at anti-clockwise feeder ratation	
4-3	Effect of incorporation depth of cotton residues and furrows	49
	spacing on penetration force after 180 days	
4-4 a	Effect of cotton residues incorporation on soil physical	
	properties at different growth periods of alfalfa, (Berseem -	
	Tirfolium SP).	53
4-4 b	Effect of cotton residues incorporation on soil physical	
	properties at different growth periods of alfalfa, (Berseem –	
	Tirfolium SP).	54
4-4 c	Effect of cotton residues incorporation on soil physical	
	properties at different growth periods of alfalfa, (Berseem -	
	Tirfolium SP).	55
4-5	Distribution of different water stable aggregates in soil under	
	study.	57

4-6	Moisture content at different applied suctions and	
	available water (A. W, volume %) under the different rates of	
	cotton-stalk residues incorporation into soil	60
4-7	Effect of organic residues incorporation on total porosity	
	% and pore size distribution of the studied soil profiles	63
4-8	Physical and chemical properties of experimental soil after the	
	end of season.	67
4-9	Chemical properties of the studied soil after the end of season	68
4.10	Effect of forward speed and depth on ground-wheel slip.	69
4-11	Effect of forward speed and depth on fuel consumption	
	requirement of crop residues incorporation machine	71
4-12	Effect of forward speed and depth on power requirement of	72
	crop residues incorporation machine	
4-13	Effect of forward speed and furrow spacing on machine	73
	performance (practical field capacity)	
4-14	Effect of forward speed and furrow spacing on field efficiency	74
4-15	Yield of alfalfa, (Berseem – Tirfolium SP).at different	
	incorporation depths of cotton residues and harvesting times.	
	(at 3-m mulch spacing and 1.6 km/h forward speed)	75
4-16	Effect of forward speed and mulch spacing on operating cost of	76
	the incorporation machine.	
4.17	The constants used in Awady equation	77

FIGURES

No .		Page
3-1	Photograph of residues incorporation machine	21
3-2	Isometric of of residues incorporation machine	22
3-3	Views of the residues- incorporation machine	23
3-4	Photograph of residues incorporation machine	24
3-5	Views of crop residues hopper.	25
3-6	Photograph of feeder drums	26
3-7	Sketch of four designed feeders	27
3-8	Motion transmitting from ground wheel to crop residues	
	feeder	28
3-9	Sketch and photograph of crop residues winged droppie	29
	channel	
3-10	Sketch of subsoiler	30
3.11	Cross-section in soil shows the representative soil samples	34
3-12	Schematic diagram of the penetrometer	40
4-1	Effect of feeder type, cotton residue-sizes and feeder-speed on	
	discharge at clockwise feeder ratation	46
4-2	Effect of cotton residues-sizes and feeder-speeds on discharge	
	of spiral-spoons feeder at anti - clockwise feeder ratation	47
4-3	Effect of incorporation depth of residuessize on penteration	49
4-4	Relative increase for water stable aggregates under study	53

4-5	Effect of incorporating of cotton-stalk residues on available	
	water in the surface layers (0-30 cm)	62
4-6	Pore size distribution of the studied soil profiles after the end	
	of season.	66
4-7	Effect of forward speed and soil depth on ground-wheel slip	
	of crop residues incorporation machine.	70
4-8	Effect of forward speed and soil depth on fuel consumption	
	and power requirement of crop residues incorporation	
	machine.	71
4-9	Effect of forward speed and furrow spacing on machine	
	performance (practical field capacity).	73
4-10	Effect of forward speed and furrow spacing on field efficiency	74

Introduction

The amounts of plant residues in Egypt reach about 25.6 million ton / year, and the percentage used as energy with direct burning is about 9.91 million ton / year, when using primitive ovens with a low quality of lees more than 10 %. This presents a great loss in energy, in addition to its direct effect in environment pollution and public health hazard **El-Berry and Baiomy, 2005**).

On the other hand, storing residues in farms and on roofs of village houses, makes a favorable environment for insects, rats and disease carriers which affect people, animals and plants, in addition to the great possibility of destructive fire (Abd El Mottaleb,1996).

Burning stalks represents great loss in energy which is equivalent to nearly about one million ton of stalks (dry matter) with an approx. amount of 180.6 million L.E. / year. The amount of cotton-stalks reaches 1.39 million ton/year (**El-Berry and Baiomy, 2005**).

These residues are considered very important for the environmental and agricultural issues. The amount of stalks per fadden is approx. about 1.42 ton (Awady et al., and Mira, Madiha, 2001).

The handling of harvest residues by traditional way increases pollution when burning in open space, and that doubles the costs of medical care and diseases' treatment which results from burning, in addition to great amount of dust when transporting these residues. Moreover, there are needs for fertilizers to cover lost nitrogen during traditional handling (**Abd El Mottaleb, 1996**).

The aim of the present work is designing, construction and testing of residues incorporation -machine into the soil, improving drainage and soil air circulation, recycling cotton residues into soil, and adding organic matter into soil to improve its capabilities.

2- REVIEW OF LITRATURE

2-1 Crop residues incorporation methods and machines.

Dawkins et al. (1984) found that in a field study, machine double digging to loosen the soil to a depth of 45 cm reduced soil strength and bulk density and increased air-filled pore space. Root development in peas in 1980 and the following wheat crop in 1981 was encouraged beyond the depth of loosening and resulted in increased water extraction compared to plots ploughed 23 cm deep in spring. Total bulk density of peas was not increased by machine double digging but was increased in a trial with manual loosening. Yield of green peas was reduced by machine or manual deep cultivation. Incorporation of P and K into the subsoil also decreased pea yields. No increase in wheat yield was found.

Patterson (1984) recommended that pretreatment of straw by tractor-drawn or combine-mounted choppers is judged to be essential for satisfactory incorporation, and cultivation should then involve 2 passes to mix and invert straw before drilling. The performance of existing equipment is reviewed for mixing and inversion and future developments in straw chopping and cultivation equipment.

Morita et al. (1984) studied the methods for mixing combinedischarged rice and barley straw in the soil layer of paddy fields by means of medium to small-sized tractors. Results obtained showed that it is essential to till and mix the crop as soon as possible after harvesting in order to hasten straw decomposition in the soil. Shallow flooding (1-2 cm deep) is recommended for puddling and also tractors worked at low speeds. When planting rice seedlings in paddy fields, where barley straw has been applied, the soil should be a little harder than in those fields without straw application and the surface water drained completely. The timeliness of crop harvesting is very important. The use of medium and small machines such as 22 hp (16 kW) tractor and a swath 1.35 m head-feeding combine reduced labour requirements and gave a total working time of about 6.6 h/10 acre for paddy rice and about 5.0 h/10 acre for barley. In the early stage, rice growth was somewhat inhibited by the application of straw to the soil, though such inhibition decreased with years. Production stability and yield can be increased by selecting appropriate rice varieties and by using effective manuring and water management. Straw application increased the soil fertility of paddy fields, considerably improving the growth and yield of barley and decreasing early ripening. Continued application of straw of paddy rice and barley improves the physical properties of soil, thus increasing the working efficiency of tillage. The workable area of field for a mechanized system of this scale, which is controlled by the working capacity of combine harvesters is 7-8 ha, that is, about 55-60% of 13 ha, the workable area of field for single cropping of paddy rice..

Konoval et al. (1985) found that the machine incorporates a herbicide sprayer, subsoilers, rotary cultivators, pneumatic drills and a roller. Herbicide is sprayed on the soil surface and the inter-row area is cultivated at a depth of 14-16 cm, while the rotary cultivators crumble the soil along the row to seed placement depth and simultaneously mix in herbicide before the seeds are drilled, covered and rolled. The prototype machine has a working width of 4.2 m and is of 6-row design. A work rate of up to 4 ha/h was achieved with a coefficient of variation for seed placement of <less or => 15%. Costs, labour requirement and fuel consumption were all substantially reduced.