Integrity of the DNA Extracted from Human Teeth Exposed to High Grades of Temperature as a Tool for Forensic Identification

Thesis

Submitted for Partial Fulfillment of MD Degree in Forensic Medicine

Presented By

Walaa Talaat Mohamed Tawfik

Assistant Lecturer in the Department of Forensic Medicine and Clinical Toxicology Faculty of Medicine, Ain Shams University

Under Supervision of

Professor/ Gamal Nasser Eid El-sayed

Professor in the Forensic Medicine and Clinical Toxicology Department Faculty of Medicine – Ain Shams University

Professor/ Rasha El-hussaini Abou Anza

Professor in the Forensic Medicine and Clinical Toxicology Department Faculty of Medicine – Ain Shams University

Professor/ Ali Mohamed Zaki Ali

Professor in the Microbiology and Immunology Department Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2018

Acknowledgment

First and foremost, thanks to Allah the Almighty to whom I relate any success in achieving any work in my life.

No Words can express my gratitude to **Prof. Dr. Gamal Masser Eid** Professor of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Ain Shams University for his expert supervision, great help, valuable advice throughout the performance of this work, continuous encouragement and without his support it was impossible for this study to be achieved in this form.

I would also like to express my cordial feelings and thanks to **Prof. Dr. Rasha El-hussaini Abou**Anza, Professor of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Ain Shams University, for her precious instructions and valuable comments during the course of this work and also for her everlasting support offered to me and guidance step by step till this study finished.

I would like to present my sincere thanks and appreciation to **Prof. Dr Ali Mohamed Zaki,** Professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University for his continuous help, perfect guidance and support throughout this work.

I would like to present my sincere thanks and appreciation to **Dr Mohamed Abd El Rahman,** Consultant of Orthodontics, Ain Shams University Hospital for his help in collecting teeth samples.

This work was supported by Faculty of Medicine, Ain Shams University, Grant Office.

Lastly and definitely not the least, I want to thank my family, for supporting me throughout my life there are no words to describe how I feel, however, I dedicate any success in my life to yours unconditional love, struggle and undying belief in me.

Walaa Jalaat

Dedication

To

MY DEAR PARENTS & SISTERS

Who gave me too much And received too little

&

To My Husband & My Lovely Son

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Glossary of Terms	
Introduction	
Aim of the Work	
Review of Literature	
Fire Related Deaths	1
DNA Identification	
Teeth as a Source of DNA	
Materials and Methods	
Results	
Discussion	90
Conclusions	101
Recommendations	102
Summary	103
References	107
Appendix	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	DNA extraction Kit contents	54
Table (2):	The primer sequence of the tested loci	57
Table (3):	Reaction composition using HotSt. Master Mix	_
Table (4):	Optimized Cycling Protocol	60
Table (5):	Showing type of teeth used among the st	
Table (6):	Showing sex distribution among the st groups	
Table (7):	Comparison between group I (a) and gr (b) as regard detection of the tested loci	_
Table (8):	Comparison between group II (a) and II (b) as regard detection of the tested le	
Table (9):	Comparison between group III (a) and III (b) as regard detection of the tested	
Table (10):	Comparison between group I (b) and II (b) as regard detection of the tested le	
Table (11):	Comparison between group I (b) and III (b) as regard detection of the tested	_
Table (12):	Comparison between group II (b) and III (b) as regard detection of the tested	· -
Table (13):	Comparison between the studied ground regard detection of amelogenin for identification	r sex

List of Cables (Cont...)

Table No.	Title	Page	No.
Table (14):	Comparison between molar and preteeth as regard detection of the teste and Amelogenin in group I after expose 100°C	d loci ure to	77
Table (15):	Comparison between molar and preteeth as regard detection of the teste and Amelogenin in group II after exp to 300°C	d loci osure	78
Table (16):	Comparison between molar and preteeth as regard detection of the teste and Amelogenin in group III after exp to 500°C	d loci osure	80
Table (17):	Comparison between males and femal regard detection of the tested loci Amelogenin in group I after exposu 100°C	and re to	81
Table (18):	Comparison between males and femal regard detection of the tested loci Amelogenin in group II after exposu 300°C	and re to	82
Table (19):	Comparison between males and femal regard detection of the tested loci Amelogenin in group III after exposu 500°C	and ire to	84

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Structure of DNA	16
Figure (2):	Developments of forensic genetics	
Figure (3):	Chromosomal positions of 13 CODIS lo	oci 22
Figure (4):	DNA amplification using polymerase reaction	
Figure (5):	Tooth structure	39
Figure (6):	Scheme of occlusal perforation, of perforation, and cervical cut	
Figure (7):	Teeth after exposure to 500 °C minutes.	
Figure (8):	Low speed round bur contra	51
Figure (9):	Dental File 25mm.	51
Figure (10):	Heat block.	52
Figure (11):	Electrical furnace (type 6-525, Ne USA).	•
Figure (12):	Vortex mixer.	55
Figure (13):	Thermal cycler.	59
Figure (14):	PCR amplification by Qiagen HotS Master Mix	_
Figure (15):	Gel electrophoresis.	62
Figure (16):	Stepone real time PCR machine (A Biosystem)	
Figure (17):	One step RT-PCR kit	64
Figure (18):	Showing type of teeth used amount studied groups.	_

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (19):	Showing sex distribution among the groups.	
Figure (20):	Comparison between group I (a) and (b) as regard detection of the tested lo	
Figure (21):	Comparison between group II (a) an II (b) as regard detection of the tested	· -
Figure (22):	Comparison between group III (a) an III (b) as regard detection of the tester	· -
Figure (23):	Comparison between group I (b) and s (b) as regard detection of the tested lo	_
Figure (24):	Comparison between group I (b) and III (b) as regard detection of the tester	
Figure (25):	Comparison between group II (b) an III (b) as regard detection of the tester	
Figure (26):	Comparison between the studied gr regard detection of amelogenin identification.	for sex
Figure (27):	Percentage of detection of the tested Amelogenin in molar and premolar group II after exposure to 300°C	teeth in
Figure (28):	Percentage of detection of the tested Amelogenin in male and female exposure to 300°C.	e after
Figure (29):	PCR results of D21S11 locus af electrophoresis of control samples in before exposure to temperature in wl locus was detected in the 10 samp negative control).	group I hich the bles. (N:

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (30):	PCR results of D21S11 locus a electrophoresis of group I sample exposure to 100°C in which the ledetected in the 10 samples. (N: control).	les after ocus was negative
Figure (31):	PCR results of TH01 locus as electrophoresis of group I sample exposure to 100°C in which the ledetected in the 10 samples. (N: control).	les after ocus was negative
Figure (32):	PCR results of D7S820 locus a electrophoresis of group II samp exposure to 300°C in which the ledetected in three samples. (N: control, P: positive control)	les after ocus was negative
Figure (33):	PCR results of D21S11 loczs a electrophoresis of group II samp exposure to 300°C in which the ledetected in two samples. (N: control, P: positive control)	les after ocus was negative
Figure (34):	Real time PCR results of Ameloge sample after exposure to 300°C sample).	(Male's
Figure (35):	Real time PCR results of Ameloge sample after exposure to 300°C (sample).	Female's

List of Abbreviations

Abb.	Full term
A	Adenine
<i>AL</i>	
	A Tissue Lysis
AW1	
AW2	$Wash\ 2$
<i>Bp</i>	Base Pair
<i>C</i>	Cytosine
CODIS	Combined DNA Index System
CT	Computed Tomography
DNA	Deoxyribonucleic Acid
DVI	Disaster Victim Identification
FBI	The Federal Bureau of Investigation
<i>G</i>	Guanine
H_2O_2	Hydrogen Peroxide
<i>MDCT</i>	Multi Detector Computed Tomography
mtDNA	$Mitochondrial\ DNA$
<i>PCR</i>	Polymerase Chain Reaction
<i>RFLP</i>	Restriction Fragment Length Polymorphism
<i>SNP</i>	Single Nucleotide Polymorphism
<i>SPSS</i>	Statistical Package for Social Science
STR	Short Tandem Repeat
<i>T</i>	Thymine
<i>VNTR</i>	Variable Number of Tandem Repeat

Glossary of Terms

<u>Alleles:</u> is an alternative form of a gene (one member of a pair) that is located at a specific position on a specific chromosome.

CODIS:

13 core STR loci have been identified by FBI that are now routinely used in the identification of individuals in the United States.

Heterozygous:

The alleles are different.

Homozygous:

The alleles are of the same type.

Locus:

location of the allele on the chromosome.

Polymorphisms:

Variations in DNA sequence between individuals.

Single Nucleotide Polymorphisms (SNPs):

It is a single base sequence variation between individuals at a particular point in the genome.

STRs:

Short sequences of DNA, normally of length 2-7 base pairs that are repeated numerous times in non-coding regions.

Abstract

Introduction: Identification of burnt bodies is a great challenge as the ordinary methods of identification is impossible, so DNA is the only available method of identification. Teeth can be used as a source of DNA in charred bodies as they are largely protected from environmental and physical conditions.

Aim: This study was designed to assess integrity of the DNA recovered from isolated human teeth after being exposed to high grades of temperature as a tool for forensic identification.

Material and Method:

Extracted teeth were subjected to the following temperatures: 100°C, 300°C and 500°C, teeth Pulp from teeth were retrieved by dental file. followed extraction of DNA with Quiagen kit followed by PCR for amplification of the tested loci (D21S11, TH01, CSF1PO, D18S51, D7S820, D13S317), then gel electrophoresis was done visualize DNA to Results: No significant difference was found from control samples on exposure to 100°C, on exposure to 300°C there was significant difference from control in all tested loci except in TH01 while on exposure to 500°C there was complete loss of DNA.

Conclusions: Dental pulp is a good source of DNA. Exposure to high grades temperatures degrades DNA from dental pulp and at 500°C genomic DNA is completely lost

Key words:

Identification. Burn. Dental Pulp. STR

INTRODUCTION

dentification of severely burned human remains may pose major problem for the forensic physicians. Law enforcement and health officials often have the responsibility for identifying the human remains found at the scene (Budowle et al., 2005). This helps family members by ascertaining the fate of their relative and allowing the remains to be handled in an appropriate manner (Binz, 2009).

Identification of a corpse is essentially based on anthropology, odontology, fingerprints, radiology, and/or DNA typing. However, it can be complicated when the corpse is completely destroyed from mass disaster, putrefaction, drowning, or burning (Raimann et al., 2012).

From a forensic perspective, fire is one of the most destructive forces in the universe. A physical fire can result in extensive soft tissue damage that conventional methods of identification are precluded (Rees and Cox, 2010).

Identification is usually difficult in these cases since the elements used (such as fingerprints, sexual characteristics, physical constitution, ethnic group, stature and/or dental arch) can be modified by degradation, hampering a conclusive result (Raimann et al., 2012).

DNA-based identity testing is a powerful tool for victim identification, it can be used to associate separated remains or body parts (Budowle et al., 2005). So, forensic specialists look for better preserved tissues to obtain DNA with good quality and amount to perform DNA analysis (Raimann et al., 2012).

However, when dead body or its remains are severely burnt, bones and teeth are often the only accessible source of DNA. Due to their unique composition and structure, DNA molecules in bone and teeth are expected to be protected from environmental challenges (Hasan et al., 2014).

DNA contained within the dentition can be extracted and profiled to identify the unknown by comparison to a known ante- mortem sample or to DNA profiles from relatives of the unknown individuals (Rees and Cox, 2010). So it is important to know whether exposure to extreme temperature influences the DNA content and its integrity in teeth (Vemuri et al., 2012), as many failed samples during human identification were accompanied by descriptions of challenging environmental exposures, especially burning (Zgonjanin et al., 2015).

AIM OF THE WORK

This study is intended to:

ssess integrity of the DNA recovered from isolated human teeth after being exposed to high grades of temperature as a tool for forensic identification.