

Applications of Starch Based Biodegradable Polymer Blends Modified By Radiation and Chemical Treatments

AThesis

Submitted for

The Degree of Ph.D in (Science)

In Inorganic and Analytical Chemistry

Вy

Sanaa Refay Mahdy

M. Sc. Inorganic Chemistry (2005)
National Center for Radiation Research and Technology
Atomic Energy Authority

Submitted to
Chemistry Department
Ain Shams University, Faculty of Girls for Arts,
Science & Education

2016

Ain Shams University
Faculty of Girls for
Arts, Science & Education

Applications of Starch Based Biodegradable Polymer Blends Modified by Radiation and Chemical Treatments

Thesis Submitted to: Chemistry Department, Ain Shams University, Faculty of Girls for Arts, Science & Education

BY Sanaa Refay Mahdy

Thesis supervisors:

Prof. Dr. Abo El-Khair B. Mostafa

Prof. of Physical Chemistry Faculty of Girls for Arts, Science& Education, Ain Shams University

Prof. Dr. Abdel Wahab M. El-Naggar

Radiation Chemistry Department, National Center for Radiation Research and Technology

Prof. Dr. Magdy Mohamed Hassan Senna

Radiation Chemistry Department, National Center for Radiation Research and Technology

Prof. Marguerite Anis Wassef (deceased)

Professor of Inorganic Chemistry Faculty of Girls for Arts, Science& Education, Ain Shams University

Assist. Prof. Saadia Ahmed Ali

Assistant Professor of Inorganic Chemistry Faculty of Girls for Arts, Science& Education, Ain Shams University

Head of Chemistry Department

Prof. Dr.

Date of Examination: / /

Ain Shams University Faculty of Girls for Arts, Science & Education Chemistry Department

Student Name : Sanaa refay mahdy

Scientific Degree : Ph. D

Department : Chemistry Department

Name of Faculty : Girls College for Arts,

University : Ain Shams University

Master Degree : 2005

سورة البقرة الآية: ٣٢

ACKNOWLEDGEMENT

First and foremost, Thanks for ALLAH for infinite and persistent supply with patience and efforts to accomplish this work successfully.

Deepest gratitude is owed to **Prof. Dr. Abo El-Khair B. Mostafa**, Prof. of Physical Chemistry, Ain Shams University, Faculty of Women for

Arts, Science & Education for his continuous supervision, practical support throughout this study and helpful discussion.

I would like to thank **Prof. Dr. Marguerite Anis wassef,** Professor of Inorganic Chemistry, Ain Shams University, Faculty of Women for Arts, Science & Education, for her continuous supervision, practical support throughout this study and helpful discussion.

I would like to thank **Prof. Dr. AWahab M. El-Naggar**, Professor of Radiation Chemistry, Radiation Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA) for suggesting the topic of this work, continuous supervision, and practical support throughout this study and helpful discussion that made this work possible.

I would like to express my great appreciation to **Prof. Dr. Magdy Mohamed Hassan Senna**, Professor of Radiation Chemistry, Radiation Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA) for suggesting the topic of this work, continuous supervision, and practical support throughout this study and helpful discussion that made this work possible.

I would like to express my appreciation to **Assist. Prof. Dr. Saadia Ahmed Ali,** Assistant Professor of Inorganic Chemistry, Ain Shams University, Faculty of Women for Arts, Science & Education for her cooperation.

I would like to thank my colleagues in the Radiation Chemistry, Radiation Chemistry Department, National Center for Radiation Research, and Technology, Atomic energy authority for their cooperation. Special acknowledgments go to my parents' brother, relatives and friends for their unconditional love and everlasting support.

Contents

		Page
	CHAPTER I	
	INTRODUCTION AND LITERATURE REVIEW	
1.1.	Natural Polymers	1
	1.1.1. Carboxymethyl cellulose	1
	1.1.2. Starch	4
	1.1.3. Cellulose acetate	7
	1.1.4. Carboxymethyl cellulose blends	8
	1.1.5. Starch-based biodegradable polymers	9
	1.1.6. Biopolymers	10
1.2.	Effect of Ionizing Radiation on Polymers	11
	1.2.1. Crosslinking and chain scission	13
	1.2.2. Radiation induced grafting	17
	1.2.3. Effect of ionizing radiation on natural polymers	19
	1.2.3.1. Effects on carboxymethyl cellulose	20
	1.2.3.2. Effects on Starch	22
	1.2.3.1. Effects on cellulose acetate	27
1.3.	Applications of Polymer Blends	27
	1.3.1. Food industry	27
	1.3.2. Agriculture	33
	1.3.3. Medical applications of polymer blends	34
	CHAPTER II	
	Materials and Experimental Techniques	
2.1.	Materials	38
2.2.	Procedures and Methods	38
	2.2.1. Preparation of plasticized starch (PLST)	38
	2.2.2. Preparation of plasticized starch/cellulose acetate	39
	blends (PLST/CA)	
	2.2.3. Preparation of plasticized starch/cellulose	39
	acetate/carboxymethyl cellulose blends PLST/CMC/CA	
	2.2.4. Preparation of plasticized starch/cellulose	40
	acetate/carboxymethyl cellulose (PLST/CMC/CA) graft	
	copolymers with acrylic acid	
2.3.	Electron Beam Irradiation	40
2.4.	Gamma Irradiation	40
2.5.	Measurements and Analysis	41
	2.5.1. Thermogravimetric analysis (TGA)	41

	2.5.2. Differential scanning calorimetry (DSC)	41
	2.5.3. Mechanical measurements	41
	2.5.4. Scanning electron microscopy (SEM)	42
	2.5.5. FT-IR spectroscopic analysis	42
	2.5.6. Gel content	42
	2.5.7. Swelling Measurements	43
	2.5.8. Metal up take	43
	2.5.9. Cytotoxicity Assay (cell culture)	43
	2.5.10.Cell Counting	44
	2.5.11.Cytotoxicity testing(MTT assay)	45
	CHAPTER III	
	RESULTS AND DISCUSSION	
3.1.	Preparation and characterization of Plasticized Starch	48
	(PLST) / Cellulose Acetate (CA)/Carboxymethyl	
	Cellulose (CMC) blend hydrogels formed by electron	
	beam irradiation	
	3.1.1. Gel content	48
	3.1.2. Swelling properties	50
	3.1.3. FT-IR spectroscopy	52
	3.1.3. Thermogravimetric analysis (TGA)	53
	3.1.4. Differential scanning calorimetry	58
	3.1.5. Tensile mechanical properties	61
	3.1.6. Scanning electron microscopy (SEM)	64
3.2.	Gamma Radiation Synthesis and Metal Adsorption of	68
	Copolymer Hydrogels From Acrylic Acid/ Plasticized	
	Starch / Cellulose Acetate / Carboxymethyl Cellulose Blends	
	3.2.1. Characterization of PAAc-co-(PLST/CA/CMC)	68
	hydrogels	
	3.2.1.1. Formation of PAAc-co-(PLST/CA/CMC)	68
	copolymer hydrogels	
	3.2.1.2. Gel content	70
	3.2.1.3. Swelling properties	73
	3.2.1.4. Tensile mechanical properties	75
	3.2.1.5. Thermal decomposition behavior	79
	3.2.1.6. Differential Scanning Calorimetry (DSC)	82
	3.2.1.7. Scanning electron microscopy	84
	3.2.2. Adsorption of heavy metals	87

Contents

	3.2.2.1. Metal uptake	87
	3.2.2.2. FT-IR analysis	88
	3.2.2.3. ESR analysis	92
3.3.	Cell Culture of Copolymer Hydrogels from Acrylic	96
	Acid/ Plasticized Starch / Cellulose	
	Acetate/Carboxymethyl Cellulose Blends Formed by	
	Gamma Irradiation	
	3.3.1. Cytotoxicity (cell culture)	96
	3.3.2. Scanning electron microscopy (SEM)	98
	3.3.3. Cell viability	100
	3.3.4.Effectof radiation on cytotoxicity test	101
	3.3.5.Effect of laser on proliferation	103
	Summary	105
Refe	rences	113
Arab	ic Summary	-

List of Tables

Eable No.	Citle	Page No.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	

Table (1):	Weight lo decompositio unirradiated o starch/cellulo cellulose blen	n temp lifferent rationse acetat	eratures os of plas e/carboxy	of sticized vmethyl
Table (2):	Weight loss (temperatures plasticized carboxymethy blend hydrogairradiated at a	of differ starch/cellu l cellulose (Fels formed b	ent rati llose PLST/ CA by electron	os of acetate/ \(\text{CMC}\) n beam
Table (3):	Kinetic parar PLST/CA/CN and after irradiated at a	IC blend hy electron be	ydrogels, eam irra	before adiation

List of Schemes

Scheme No	v. Citle	Page No.
Scheme (1):	Molecular structure of carbox cellulose	-
Scheme (2):	The two different linkages between glucose monomers in starch	
Scheme (4):	Chemical structure of cellulose ac	etate 8
Scheme (5):	Schematic diagram of cropolymers.	
Scheme (6):	Grafting of polymer by the pre-irr method.	
Scheme (7):	Grafting of polymer by the method	
Scheme (8):	Expected scheme of Cu ⁺² ion co with PLST/CA/CMC (85 copolymer hydrogel with 15% AA	5/10/5%)
Scheme (9):	Expected scheme of Cu ⁺² ion cowith PLST/CA/CMC (85 copolymer hydrogel with 15% A heated at 50 °C for 24 hours	5/10/5%) AAc and

List of Figures

Figure No	o. Eitle	₽age No.
Fig. (1):	Effect of electron beam irradiation dose on the content of PLST/CA blend hydrogels, prepare different ratios.	ed at
Fig. (2):	Effect of electron beam irradiation dose on gel content of PLST/CA/CMC blend hydrog prepared at different ratios	gels,
Fig. (3):	Effect of EB irradiation dose on the swelling of in water at room temperature of PLST/CA by hydrogels of different compositions	lend
Fig. (4):	Effect of EB irradiation dose on the swelling of water at room temperature, of PLST/CA/C blend hydrogels of different compositions	MC
Fig. (5):	FT-IR spectra of PLST/CA/CMC by hydrogels formed by electron beam irradiation a dose of 30 kGy.	n at
Fig. (6):	TGA thermograms and the corresponding rate the thermal decomposition reaction curves PLST/CA blend hydrogels of diffe compositions, before and after EB irradiation dose of 30 kGy	of erent at a
Fig. (7):	TGA thermograms and the corresponding rate the thermal decomposition reaction curves PLST/CA/CMC blend hydrogels of diffe compositions, before and after EB irradiation dose of 30 kGy	of rent at a
Fig. (8):	DSC scans of different ratios of unirradic PLST/CA/CMC blends	
Fig. (9):	DSC scans of different ratios of PLST PLST/CA/CMC blend hydrogels formed electron beam irradiation at a dose of 30 kGy.	by

Fig. (10):	Effect of electron beam irradiation dose on the tensile at break and elongation at break properties of PLST/CA blend hydrogels of different ratios 62
Fig. (11):	Effect of electron beam irradiation dose on the Tensile at break and elongation at break properties of PLST/CA/CMC blend hydrogels of different ratios
Fig. (12):	SEM micrographs of the fracture surfaces of unirradiated PLST/CA blends (%) and their blend hydrogels formed by electron beam irradiation at a dose of 30 kGy. 65
Fig. (13):	SEM micrographs of the fracture surfaces of unirradiated PLST/CA/CMC (%) blends (%) and their blend hydrogels formed by electron beam irradiation at a dose of 30 kGy
Fig. (14):	Schematic diagram of the proposed semi- (IPN) networks of AAc-co-(PLST/CA/CMC) copolymer hydrogels, formed by gamma radiation70
Fig. (15):	Effect of AAc ratio on the gel fraction (%) of PLST/CA (80/20%) and PLST/ CA/CMC (80/15/5%) copolymer hydrogels, prepared at different doses of electron beam irradiation
Fig. (16):	Effect of AAc ratio on the equilibrium swelling (%), in water at room temperature, of PLST/ CA (80/20%) and PLST /CA/CMC (80/15/5%) copolymer hydrogels, prepared at different doses of electron beam irradiation
Fig. (17):	Effect of AAc ratio on the tensile strength and elongation at break of PLST/CA (80/20%) copolymer hydrogels, prepared at different doses of electron beam irradiation

Fig. (18):	Effect of AAc on the tensile strength and elongation at break of AAc-co-PLST/CA/CMC (80/15/5%) copolymer hydrogels, prepared at different doses of electron beam irradiation	. 78
Fig. (19):	TGA thermograms and the corresponding rates of the thermal decomposition reaction of: (A) and (B) unirradiated different ratios PLST/CA/CMC blends (C) and (D) PAAc-co-(PLST/CA/CMC) copolymer hydrogels of different ratios.	. 81
Fig. (20):	DSC thermograms of the PLST/CA (80/20%) and PLST/CA/ CMC (80/10/10%) blends and their hydrogel copolymers prepared by gamma radiation with different ratios of AAc at a dose of 10 kGy.	. 83
Fig. (21):	SEM micrographs of the fracture surfaces of PLST/CA (80/20%) and PLST/CA/CMC (80/15/5%) blends and their copolymer hydrogels prepared with 10% acrylic acid by electron beam irradiation at a dose of 10 kGy.	. 85
Fig. (22):	SEM micrographs of the fracture surfaces of PLST/CA (80/20%) and PLST/CA/CMC (80/15/5%) blends and their copolymer hydrogels prepared with 10% acrylic acid by electron beam irradiation at a dose of 30 kGy.	. 86
Fig. (23):	Uptake of copper and nickel ions by PLST/CA and PLST/CA/ CMC blend before and after gamma-radiation copolymerization with different ratios of AAc at a dose of 10 kGy.	. 88
Fig. (24):	FT-IR spectra of PLST/CA (80/20%) blend before and after gamma-radiation copolymerization with 15% of AAc at a dose of 30 kGy and loaded with Cu ⁺² ions	. 91

Fig. (25):	FT-IR spectra of PLST/CA/CMC (80/15/5%) blend before and after gamma-radiation copolymerization with 15% of AAc at a dose of 10 kGy and loaded with Cu ⁺² ions
Fig. (26):	ESR curves of PLST/CA/CMC (85/10/5%) copolymer hydrogel with 15% AAc, and loaded with Cu ⁺² ions
Fig. (27):	ESR curves of PLST/CA/CMC (85/10/5%) copolymer hydrogel with 15% AAc, loaded with Cu ⁺² ions and heated at 50 °C for 24 hour94
Fig. (28):	SEM micrographs of the fracture surfaces of AAc/PLST/CA/CMC (%) copolymer hydrogels (2D-scaffolds) prepared by gamma irradiation at a dose of 10kGy
Fig. (29):	Photomicrograph of HEPG-2 cell proliferation on different unirradiated PLST/CA/CMC (%) blends: (A) 100/0/0 (B) 80/20/0, and (C) 75/20/5 100
Fig. (30):	Photomicrograph of HEPG-2 cell proliferation on AAc/PLST/CA/CMC (%) copolymer hydrogels prepared by gamma irradiation at a dose of 10 kGy (A) 5/75/20/5 unneutralized by Na ₂ CO ₃ (B) 5/75/20/5 neutralized by Na ₂ CO ₃
Fig. (31):	Photomicrograph of HEPG-2 cell proliferation on different AAc/PLST/CA/CMC (%) copolymer hydrogels prepared by gamma irradiation at a dose of 10 kGy: (A) 90/10/0 (B) 90/10-30 kGy (C) 85/10/5-0 kGy (D) 85/10/5-30 kGy
Fig. (32):	Cell viability (%) measured by the Trypan blue exclusion test for HEPG-2 cells growth on uncrosslinked AAc/PLST/CA/CMC and 2D scaffolds copolymer hydrogels prepared by gamma irradiation at a dose of 30 kGy, before and after the exposure to He-Ne laser radiation 104

Aim of the work

The present work aims to producing and improving the applicability of starch based biodegradable blends by ionizing radiation and additives in the field of biomedical and for uptake of metal ions applications. In this regard, blends based on plasticized starch (PLST) as major constituent, carboxymethyl cellulose and cellulose acetate (CA) were prepared in the form films by casting solutions. thin In addition, PLST/CMC/CA blends were grafted with acrylic acid. The irradiated blends were characterized IR gamma spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mechanical testing, swelling and scanning electron microscopy (SEM). As an application, the different blends were used in the field of biomedical as cell culture. These blends were also used in metal uptake applications.