APPLICATION OF FOOD SAFETY MANAGEMENT SYSTEM DURING WHEAT FLOUR MILLING AND PROCESSING

By

MEDHAT MOHAMED EL-BAYOUMI AHMED

B.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1998 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2006

A thesis submitted in partial fulfillment of

the requirements for the degree of

in
Agricultural Science
(Food Science & Technology)

Department of Food Science
Faculty of Agriculture
Ain Shams University

2015

Approval Sheet

APPLICATION OF FOOD SAFETY MANAGEMENT SYSTEM DURING WHEAT FLOUR MILLING AND PROCESSING

By

MEDHAT MOHAMED EL-BAYOUMI AHMED

B.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1998 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2006

This thesis for Ph.D. degree has been approved by:

Dr. Salah Kamel M. EL-Samahi

Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Suez Canal University

Dr. Nadia Refat Abd El-Rahman

Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Dr. Yehia Abd El-Rrazik Heikal

Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University (principle supervisor)

Date of Examination: 15/02/2015

APPLICATION OF FOOD SAFETY MANAGEMENT SYSTEM DURING WHEAT FLOUR MILLING AND PROCESSING

By

MEDHAT MOHAMED EL-BAYOUMI AHMED

B.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 1998 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2006

Under the supervision of:

Dr. Yehia Abd EL-Razik. Heikal

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Salwa M. Abo- EL-Fetoh

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

ABSTRACT

Medhat Mohamed EL-Bayoumi Ahmed: Application of Food Safety Management System During Wheat Flour Milling and Processing. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2015.

Food safety management system is a systematic method that serves as the foundation for assuring food safety in the modern world. This system was designed to be used to prevent the occurrence of food borne hazards from the first point of production chain through manufacturing, storage to the end user and his satisfaction.

The purpose of the present work was to pay increase attention to wheat grain and wheat flour quality by implementation of food safety management system by applying ISO 22000 and HACCP as a safety tools in wheat milling industry, from receiving wheat grains to produce their product (flour streams).

Checklists for prerequisite programs (PRP) in wheat milling processing line were obtained and results of hygienic principles were as follows: Total viable count of swabs from hands of plant workers ranged from 3.00 to 1.50 log cfu/swab during the investigation period of autumn, where it was from 2.00 to 1.48 log cfu/swab during spring period. In the same time, counts of moulds ranged from 2.13 to 1.00 and from 1.54 log cfu/swab to < 9 during the aforementioned investigation periods, respectively.

On the other hand chemical composition and microbiological analysis for water which used in wheat grain conditioning were obtained and its results were <1 cfu/ml for coliform group; fecal streptococci as well as *E.coli* and it was in consistence with the governmental regulation. PH-value was 7.55 for autumn season and 7.05 for spring season, otherwise, total dissolved solids were 476 mg/L and 460 mg/L for autumn season and spring season respectively.

Equilibrium moisture contents of wheat grains and wheat flour as well as its streams were obtained and the results were varied from 0.0237 to 0.1637 g H_2O / g DM for wheat grain and from 0.0685 to 0.20 g H_2O / g DM for wheat flour the water activity range from 0.11 to 0.85 at 21 ± 3 ^{O}C . The sorption isotherms curves of wheat grain and flour streams could be presented well by the sorption models of Henderson and GAB. Value of the monolayer moisture contents were calculated by BET-equation

Hazards identification and determination of acceptable levels for wheat grains and its products were obtained which were represented in chemical, physical as well as microbiological hazard. In this study, Preparation for milling as well as flour sieving considered as CCP1 and CCP2, respectively.

The CCP1 (preparation to milling) represent the sifting process and metal detector step for the hydrated grains transported through conveyers from storage silos to the mill. The hazards in CCP1 are the presence of insects, insect's eggs as well as physical hazards.

The results of heavy metals as a chemical hazard were less than 0.01 ppm for Pb; As; Hg and Cd. On the other hand, results of pesticide residue for wheat grain appeared in this study were chlorapyrifose 0.15 ppm; Diazinon 0.01 ppm; Malaathione 0.044 ppm and trizophorase 0.015 which represent fungicides and rust but it didn't appeared in the end products (flour).

Results of microbiological analysis of wheat grains during autumn contained 4.85, 2.72, 2.10, 1.89 and 4.69 log cfu/g for total plate count and counts of moulds, aerobic and anaerobic spore forming bacteria and coliform group, respectively. Otherwise It could be noticed that wheat flour, after different milling steps had a microbiological load of 4.30, 3.63, 2.10, 1.58 and 2.53 log cfu/g for total viable count and counts of moulds, aerobic & anaerobic spore forming bacteria and coliform group, respectively during autumn seasons.

The microbiological load of tested wheat flour for the aforementioned microbiological criteria were 4.17, 2.45, 1.89, 1.22 and 1.80 log cfu/g, respectively during the spring seasons.

The variation in microbiological load of wheat flour in comparison to wheat grains showed that, wheat flour had generally microbiological load lower than that of wheat grains, especially in anaerobic spore forming bacteria and coliform group, which could be attributed to the effect of milling process and its steps, such as cleaning and hydration steps, on reduction of the microbiological load of grains. In the same time, the results of pathogenic bacteria *e.g Bacillus. cereus*, *Staphylococcus aureus* and *Escherichia coli* had the same trend.

Key Words: wheat,flour,Equilibrium moisture content, sorption isotherms, HACCP,ISO 22000

ACKNOWLEDGEMENT

All praises and thanks are due to **ALLAH**, who blessed me with kind professors and colleagues, and gave me the support to complete this thesis.

I would like to express my sincere appreciation and deepest gratitude to **Prof. Dr. Yehia A. Heikal**, Professor Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University for his close supervision, great help, valuable suggestions and continuous encouragement during this study.

Deepest thanks and sincere appreciation to **Prof. Dr. Salwa M. Abo-El-Fetoh**, Professor of Food Science and Technology, Faculty of Agriculture, Ain Shams University for his guidance, constructive criticism and every possible helps she kindly offered throughout this work.

I wish to express my deepest sincere appreciation to **Prof .Dr.**Mohamed Moustafa Mohamed Abd El-Razik, Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University for his attention and efforts while supervising this work.

Thanks are due to all the staff members and colleagues at the Food Science Department, Faculty of Agriculture, and Ain Shams University for providing all facilities that made this work possible.

In this respect I cannot forget my family for their continuous help and support.

CONTENTS

LIST OF TABLE	Page vii
LIST OF FIGURS	ix
LIST OF ABBREVIATIONS	X
LIST OF APPENDIXS	78
1. INTRODUCTION	1
2. REVIEW OF LITRATUR+6-5E	5
2.1. Food safety management systems	5
2.2 .Prerequisite Programs (PRPs)	7
2.3. HACCP Principles	8
2.4. Wheat milling process approach	9
2.4.1. Wheat grain on farm and post-harvest	9
2.4.2. Storage in silos	10
2.4.3. Screening and cleaning	11
2.4.4. Hydration of wheat	11
2.4.5. Wheat flour milling	13
2.4.6. Flour packaging; storage and sorption isotherms	17
2.5.Hazard associated with milling industry	24
2.5.1.Chemical Hazards	24
2.5.2.Biological Hazards	30
2.6. ISO 22000	36

2.6.1 Proliferation of standards	36
3.MATERIALS AND METHODS	42
3.1. MATERIALS	42
3.1.1. Wheat flour	42
3.1.2.Water	42
3.1.3. Microbiological media used for analysis	42
3.1.3.1.Aerobicplatecount(Totalviablecount/TVC)	42
3.1.3. 2 Vilot Red Bile Agar (VRBA) media	43
3.1.3. 2.1. confirmatory test (Brilliant green lactose bile broth)	43
3.1.3.3. TBX media	43
3.1.3. 4. DG18 medium	44
3.1.3.5. Baird-Parker Agar	44
3.1.3.6. Mannitol Egg Yolk Polymyxin Agar	45
3.1.3.7 Media used for detection of Salmonella sp.	45
3.1.3.7 .1. Pre-enrichment	45
3.1.3.7.2 .Selective-enrichment	46
3.1.3.7.3Selective plating	47
3.1.3.7.4Biochemical reaction	47
3.2. METHODS	48
3.2.1 Application of food safety management system (FSMS)	48
3.2.1.1.Listing the prerequisite programs:	49
3.2.1.2.PRP definition	49
3.2.1.3. OPRP definition	49
3.2.2 Implementation of FSMS	50
3.2.2.1 Risk Assessment tools and calculations	50
3.2.2.2 Risk Priority Number (RPN)	50
3.2.3. Sampling of wheat and flour	51
3.2.4. Sampling of water	51

3.2.5. Environmental and hygienic samples	51
3.2.5.1. Air samples	51
3.2.5.2. Surface and hand swabs	52
3.2.6 Analytical methods	52
3.2.6.1 Pre-requirements of microbiological examination	52
3.2.6.1.1 Good laboratory practice (GLP) and quality control	52
3.2.6.1.2. Preparation of sample	53
3.2.6. 1.3. Preparation of serial dilution for samples	53
3.2.6.1.4. Preparation of sample for detection of salmonella spp.	53
3.2.6.2. Swab testing techniques	53
3.2.7 Determination of Aflatoxin	54
3.3. The microbial analysis of wheat and flour samples	54
3.3.1. Salmonella spp.	54
3.3.1.1.testing procedure for <i>Salmonellasp</i>	56
3.3.1.1.1. Pre-enrichment	56
3.3.1.1.2. Selective Enrichment	56
3.3.1.1.3. Plating out and identification	56
3.3.1.1.3. Biochemical confirmation	57
3.3.1.1.3.1. TSI agar	57
3.3.1.1.3.2.Urea agar	57
3.3.1.1.3.3.L-Lysine decarboxylation medium	57
3.3.1.1.4. Serological confirmation and serotyping	57
3.3.1.1.4.1 General	57
3.3.1.1.4.2.Elimination of auto-agglutinable strains	57
3.3.1.1.4.3.Examination for O-antigens	58
3.3.1.1.4.4.Examination for Vi-antigens	58
3.3.1.1.4.4.Examination for H-antigens	58
3.3.1.1.5. Interpretation and expiration of results	58
3.3.2. Aerobic plate count (Total viable count / TVC)	58
3.3.3. Coliform count	59
3.3.4. Yeast and Moulds Count (Y&M)	59

3.3.5. <i>E. coli</i>	60
3.3.6. Staphylococcus aureus <mark>count</mark>	60
3.3.7. <i>Bacillus ceruse<mark>count</mark></i>	60
3.4. chemical analyses	61
3.4.1. Pesticide residues analysis	61
3.4.1.1. Sampling	61
3.4.1.2. Sub-Sampling	61
3.4.1.3. Method of analysis	61
3.4.1.4. Equipment's and <mark>chemicals</mark>	61
3.4.1.4.1. Equipment's	61
3.4.1.4.2. Chemical and reagents	62
3.4.1.5. Extraction and clean up	62
3.4.1.6. GC determination	62
3.4.1.7 GC Limit of detection; limit of quantification and MRL	62
3.4.2. Mineral composition	63
3.4.3. Chemical composition	63
3.4.4. Rheological characteristics	63
3.4.4.1. Farinogrph test	63
3.4.4.2. Extensogrph test	64
3.5.Physical inspection	64
3.6. Storage-ability (Equilibrium moisture content)	64
3.6.1. Determinations of equilibrium moisture contents	64
3.6.2 .Fitting sorption data to isotherms models	65
3.7. Statistical analysis:	70
4.RESULTS AND DISCUSSION	71
4.Food safety management system (FSMS)	71
4.1.1Prerequisite Programs (PRPs)	71
4.2 Preliminary steps for conducting hazard system	82
4.2.1 Product characteristics	82
4.2.1.1 Raw material and ingredients	82
4.2.1.2Characteristics of Wheat Flour	86

4.2.2 Wheat flour description and its intended use	87
4.2.3 Flow diagram of milling process and its steps	89
4.2.3.1 Wheat receiving and storage	91
4.2.3.2 Wheat cleaning area	92
4.2.3.3Wheat milling	92
4.2.3.4 End product (flour streams)	93
4.2.3.5 Packaging	94
4.2.4 Storability of products	94
4.2.4.1Sorption isotherms	95
4.2.4.2 Moisture Equilibrium Curves	95
4.2.4.3 Equilibrium Moisture Content	100
4.2.4.4 sorption isotherms curves of tested materials	102
4.2.4.5 Mathematical description of sorption isotherms curves.	105
4.3 Hazard analysis	113
4.3.1. Hazard identification and description of accepted levels	113
4.3.2 Hazard assessment tools and corrective action	118
4.3.2.1 Risk Assessment	118
4.3.2.2 Failure Mode and Effects Analysis (FMEA)	118
4.3.2.3 Corrective actions definition and its effects	128
4.3.2.4Pareto diagram for risk hazard Classification	133
4.3.3 Identifying of Operational Prerequisite Programs.	136
4.3.4 Establishing HACCP plan	139
4.3.4.1 HACCP plan	139
4.3.4.2 Identification and determination of critical control	139
points	
4.3.4.2.1CCP 1 Preparation for milling	139
4.3.4.2 .2 CCP 2 Flour sieving	141
4.3.4.2 Monitoring system for critical control points and	143
OPRP'S	
4.3.4.2.1 Microbiological analysis of wheat grains:	144
4.3.4.2.2 Chemical and pesticide residual analysis of wheat	144

grains		
4.3.4.2.3 Monitoring of microbiological and pesticide residual		
analysis of wheat flour		
4.3.4.2.4 Monitoring of wheat bran; Microbiological analysis	149	
4.4 Corrective action	151	
4.5 Establishment of verification plans:	151	
4.6 Documentation and record-keeping procedures	153	
4.7 Handling of potentially unsafe products		
4.9 Product withdrawals	154	
4.9 Food safety management system verification(Internal audit)	155	
5. SUMMARY	156	
6.REFERENCES	168	
7.APPENDIX		
8 ARARIC SIIMMARV		

LIST OF TABLES

No.	Title	Page
1	Saturated salt solutions and their relative humiliates at 22 ± 3 $^{\circ}\text{C}$	64
2	Observations results of the check prerequisite programs (PRP) in wheat milling processing line	74
3	Chemical analysis of conditioning water used in wheat milling line	76
4	Microbiological analysis of conditioningwater used in wheat milling line	77
5	Microbiological analyses of swabs from workers in touch with the product during different investigation periods	78
6	Microbiological analysis of swabs from surfaces	79
7	Total viable count (Log cfu of investigation number/ plate) of air samples collected from different milling areas during different investigation periods	81
8	criteria for receiving of wheat	83
9	quality and safety characteristics of Soft Wheat grains in	84

	receiving area	
10	quality and safety characteristics of hard Wheat grains in receiving area	85
11	proximate composition and rheological properties of 72% extraction wheat flour (Russian stream):	86
12 13	Wheat flour description and its intended use Rate (K-value) of water loss/gain during equilibrium test	88 98
	$(g H_2O/100g DM).$	
14	Equilibrium moisture content of wheat coarse bran fine bran and flour at different a_w - values (at 22 ± 3 °C)	101
15	Calculated parameters of G A B and B E T equations for sorption isotherms behavior of wheat and its streams	106
16	Calculated parameters of Henderson, Halsey, Chung-pfost and Smith equations for sorption isotherms behavior of wheat and its streams	108
17	Hazard analysis and control measurement results	114
18	HACCP worksheet for wheat flour milling and its critical accepted limits	116
19	Failure mode and effect analysis during hazardous wheat milling process; estimated resulted before corrective action	129
20	Failure mode and effect analysis of estimated results after corrective action	131
21	Estimated RPN ratio after and before undertaken corrective action	135
22	Results of analysis of radioactive materials in wheat grains	138
23	CCP worksheet for Process of flour milling	142