

Novel Methods In Management Of Dry Eye

Essay
Submitted for partial fulfillment of Master Degree in
Ophthalmology

By **Nourhan Mortada Koraish**

M.B., B.Ch

Supervised by

Prof. Dr. Tarek Mohamed Mahmoud Abdallah

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Reham Fawzy Elshinnawy

Lecturer of Ophthalmology
Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain-Shams University
Cairo, Egypt
2012

Contents

	Pages
List of Abbreviation	i
List of Tables	iii
List of Figures	iv
Introduction	1
Chapter 1:	5
Anatomy and physiology	
Chapter 2:	11
Pathogenesis and causes of dry eye	
Chapter 3:	17
Diagnosis of dry eye disease	
Chapter 4:	68
Treatment of dry eye disease	
Summary	
References	134
Arabic Summary	-

List of Abbreviations

AM	Amniotic membrane
AMT	Amniotic membrane transplantation
BAK	B enzalkonium chloride
BSLPD	B oston scleral lens prosthetic device
CCD	Charge-coupled device
CGVHD	Chronic graft-versus-host disease
CMC	Carboxymethylcellulose
COX	Cycloxygenase enzyme
DED	D ry eye disease
DEWS	D ry eye workshop
DHA	D ocosahexaenoic acid
EDTA	Ethylene diamine tetra acetic acid
EEC	Ectrodactyly ectodermal-dysplasia-clefting
EFAs	Essential fatty acids
EGF	Epidermal growth factor
EPA	Eicosapentaenoic acid
ELISA	Enzyme linked immunosorbent assay
EPA	Eicosapentaenoic acid
FCT	Fluorescein clearance tear test
FDA	Food and drug administration
FK	Filamentary keratitis
GLA	Gamma linolenic acid
HCTZ	Hydrochlorothiazide
HIV	Human immunodeficiency virus
HPMC	Hydroxypropylmethyl cellulose
HP-guar	H ydroxypropyl-guar
HRT	Hormone replacement therapy
IAI	Irregularity asymmetry index
IBI	Inter blink interval
IL-1	Interleukin-1
IOP	Intraocular pressure
KCS	Keratoconjunctivitis sicca
LASIK	Laser in situ keratomileusis

LFU	Lacrimal functional unit
LIPCOF	Lid parallel conjunctival folds
LSCD	Limbal stem cell deficiency
MGD	Meibomian gland dysfunction
NITBUT	Non invasive break-up time
NSAIDs	Non-steroidal anti inflammatory drugs
ОСР	Ocular cicatricial pemphigoid
OPI	Ocular protection index
OTC	Over the counter
PAS	Periodic acid Schiff
PVA	Polyvinyl alchol
RPM	Revolution per minute
SAI	Surface asymmetry index
SH	Sodium hyaluronate
SMG	Submandibular gland
SRI	Surface regularity index
SS	Sjogren's syndrome
TBUT	Tear break up time
TCR	Tear clearance rate
TFI	Tear function index
TGF	Transforming growth factor
TNF-alpha	Tumor necrosis factor-alpha
VEGF	Vascular endothelial growth factor
WHS	Women's Health Study

List of tables

Table No.	Title	Page
1	The McMonnies questionnaire	19
2	Grading of lid parallel conjunctival folds (LIPCOF)	27
3	Grading of corneal and conjunctival staining	38
4	Grading of interference of lipid layer by interferometer	60
5	Dry Eye Disease Severity Grading Scheme	69

List of Figure

Fig. No.	Title	Page
1	Preocular tear film layers	5
2	Normal upper bulbar conjunctiva goblet cells (arrows)	
	among the nongoblet epithelial cells. PAS stained	8
3	The complexity of tear film distribution and stability	9
4	Lacrimal Functional Unit	10
5	Mechanism of dry eye syndrome	12
6	Classification of Dry Eye Disease	15
7	Normal tear meniscus	25
8	Keratoconjunctivitis Sicca, reduced tear meniscus	25
9	Meibomian gland dysfunction	26
10	Lid-parallel conjunctival folds highlighted by fluorescein	27
11	Punctuate epithelial keratopathy	28
12	Filaments and mucus plaques	29
13	Schirmer test	33
14	Thread test	35
15	Rose Bengal staining of the conjunctiva (a) and cornea (b	39
16	(a) PAS staining of normal impression cytology with	
	goblet cells (asterisks) and a 1:2 nucleus-cytoplasm ratio	40
16	(b) PAS staining of metaplastic human conjunctiva with	
	1:12 nucleus-cytoplasma ratio (left) and snake-like	
	condensed nuclei (right, arrows)	41
17	In vivo laser scanning confocal microscopy	42
18	In vivo confocal microscopy in a normal eye	43
19	Impression cytology imprints and in vivo confocal	
	microscopy scans from representative Sjogren	
	syndrome(SS) patients and control subjects: (a):	
	Conjunctival impression cytology imprint showing sheets	
	of epithelial cells with scanty cytoplasm and large nuclei	
	in a 42 year old female control subject. (b): Imprint from	
	a 38 year old female SS patient shows consistently large	
	epithelial cells with abundant cytoplasm and pyknotic	
	nuclei. (c): Confocal microscopy scan showing sheets of	
	densely packed small epithelial cells with large nuclei and	
	scanty cytoplasm in the same control subject. (d):	
	Confocal microscopy scan showing enlargement of	
	individual superficial epithelial cells with pyknotic nuclei.	
	Red arrow shows an area of cellular drop out	44

Fig. No.	Title	Page
20	Tear film break-up. The beginning of tear fil break-up	
	is visible in the lower right corner by wisps of	
	black	48
21	Oculus keratograph	50
22	Xeroscope images. (A) Normal patient showing	
	uniform grid. (B) Patient with lacrimal	
	keratoconjunctivitis, showing distortions of the grid	
	indicated by arrows	52
23	steps of tear function index test	55
24	Gland expression	56
25	loop of plastic tape	57
26	Infrared Meibography of Normal Meibomian Glands	58
27	extensive meibomian gland dropout in a patient with	
	meibomian gland dysfunction	59
28	Interferometry images of (a) normal eye, (b) eye with	
	abnormal lipid layer	60
29	Meniscometry: demonstration of the reduced size of	
	the tear meniscus in aqueous- deficient dry eye (L)	
	compared to a normal tear meniscus (R) using	
	meniscometry	62
30	Ferning test. a is class I, b is class II, c is class III, d is	
	class IV, e is class V	66
31	chemical composition of (a) a healthy human tear,(b)	
	tears in chronic DED, and (c) an artificial tear	83
32	Mechanism of action of anti-inflammatory drugs by	
	blocking the Inflammation Pathway	86
33	Insertion of a silicone punctal plug in a patient with	
	DED	99
34	The Oasis Form Fit plug	100
35	The Smart Plug, dry (top) and warmed (bottom	101
36	(a): Freeman-style silicone plug on its inserter (b):	
	Enlarged view of the plug	102
37	Three sizes of Herrick lacrimal Plugs on their	
	inserters	102
38	moisture chamber spectecles	107

Fig. No.	Title	Page
39	Boston scleral lens prosthetic device	112
40	Punctal patching with autologous conjunctiva. (A) Ectropionization of the lacrimal punctum, a square incision around the punctum. (B) Excision of the superficial epithelial and subepithelial tissue inside the square. (C) Excision of a square of bulbar	
	conjunctiva of the same eye. (D) Suture of the transplanted patch onto the lacrimal punctum	118
41	Punctal blepharorrhaphy. (A) A 3 X 2.5 mm parallelopiped margin of superficial tissue is excised from the medial part of both lids, including the lacrimal puncta, leaving a raw surface. (B) The four corners of one of the raw rectangles are sutured to the corresponding corners of the contra-altitudinal lid. Thus, the effect of the punctual occlusions is added to	
	that of the medial tarsorrhaphy	121

First and foremost, all thanks are due to **ALLAH**. I wish to express my extreme thankfulness, appreciation and deep gratitude to **Prof. Dr. Tarek Mohamed Mahmoud Abdallah**, Professor of Ophthalmology, Ain Shams University for his continuous help and unlimited support.

I would like to express my sincere appreciation to **Dr. Reham fawzy Elshinawy**, Lecturer of Ophthalmology, Ain Shams University, for her valiable guidance and support throughout this work. Her supervision has been a great help to me to harmonize the whole work.

Finally I would like to express my great thanks to **my family** for their efforts, patience, support and encouragement.

INTRODUCTION

Dry eye syndrome (DES) is a multifactorial disease of the tears and the ocular surface that results in discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface. DES is also called more recently, dysfunctional tear syndrome (*Perry*, 2008). Multiple causes can produce either inadequate tear production or abnormal tear film constitution, resulting in excessively fast evaporation or premature destruction of the tear film. (*Stephen*, 2012)

The human tear film plays a vital role in the maintenance of optical clarity as well as in ocular surface protection, lubrication, and nourishment. It is made up of three layers. The outer most the lipid layer secreted by meibomian glands, dysfunction of which results in evaporative dry eye. Middle aqueous layer secreted by the lacrimal gland, deficiency of this layer results in hyposecretive dry eye. The inner most is the mucin layer secreted by the conjunctival goblet cell, crypts of Henle and glands of Manz. Deficiency of this layer is the feature of both hyposecretive and evaporative state. (Rahman et al., 2007)

DES can be classified into two main categories, tear deficient dry eye and evaporative dry eye. The tear deficient dry eye is subdivided into two categories: Sjogren syndrome tear deficiency and non-Sjogren tear deficiency depending upon whether there are associated systemic signs and symptoms or not. (*Peters and Colby*, 2007)

Dry eye disease (DED) patients may experience foreign body sensation, burning, itching or redness of the eyes, blurred vision and photophobia. (*Belmonte et al*, 2004)

These symptoms are often exacerbated in smoky or dry environments, by indoor heating, or by excessive reading or computer use. (*Stephen*, 2012)

These symptoms are quantified objectively in The McMonnies questionnaire, which includes 14 questions given to the patient to fill out, which is used to screen patients for the possibility of dry eye disease. (*McMonnies and Ho*, 2004)

In DES, symptoms tend to be worse toward the end of the day, with prolonged use of the eyes, or with exposure to extreme environmental conditions. Patients with meibomian gland dysfunction (MGD) may complain of redness of the eyelids and conjunctiva, but in these patients, the symptoms are worse on awakening in the morning. Paradoxically, some patients with DES

complain of too much tearing. When evidence of DES exists, this symptom often is explained by excessive reflex tearing due to severe corneal surface disease from the dryness. Certain systemic medications also decrease tear production, such as antihistamines, beta-blockers, and oral contraceptives. (*Perry*, 2008)

DED is essentially a clinical diagnosis, made by combining information obtained from the history and from the physical examination and performing one or more tests to lend some objectivity to the diagnosis. No single test is sufficiently specific to permit an absolute diagnosis of DES.(Stephen, 2012)

For patients with moderate to severe dry eye diagnosis can be made by one or more of the standard clinical tests, namely fluorescein, rose bengal or lissamine green staining, tear-film breakup time, Schirmer's tests and fluorophotometry, impression cytology and tear osmolarity test. (Abelson, 2011)

In vivo laser scanning confocal microscopy seems to be an efficient non-invasive tool in the evaluation of phenotypic alterations of the conjunctival epithelium in dry eye disease. (*kojima et al, 2010*)

Also oculus keratograph has a scanning softwar that can non-invasively assess the tear film ,providing both quantitative and qualitative assessments by using corneal topography.(koury, 2011)

The International Dry Eye WorkShop (DEWS) Subcommittee members reviewed an approach for the management of DED which is based on disease severity ranging from education environmental/dietary modifications, and preserved and preservative-free artificial tear substitutes, anti-inflammatory agents, topical corticosteroids, topical cyclosporine A, topical/systemic omega-3 fatty acids, tetracyclines, punctal plugs, secretagogues, moisture chamber spectacles, Autologous serum up to surgical options, which include cisternoplasty, tarsorrhaphy (partial or complete), Mucous membrane grafting, salivary gland duct transposition, conjunctival graft of the minor salivary gland and aminiotic membrane transplantation. (Stephen, 2012) In addition to limbal or stem cell transplantation. (*Hyon et al.*, 2007)

Anatomy And Physiology Of Preocular Tear Film

Tear film is a thin film of fluid which coveres the exposed ocular surface and essential for the health and normal function of the eye and visual system. (Dartt et al, 2011) Its overall purpose is to maintain the corneal clarity and the quality of the image projected onto the retina. The corneal clarity depends, in turn, on the integrity of the tear film and the health of the ocular surface. (Pleyer and Mondino, 2004)

The normal preocular tear film is formed of three layers from anterior to posterior (fig.1): a thin superficial lipid layer, a thicker aqueous layer and a very thin mucoid layer covering the corneal epithelium. (Kanski et al., 2011)

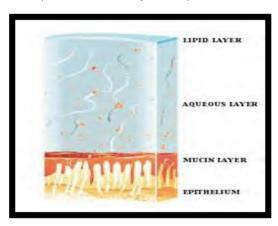


Fig.(1) Preocular tear film layers (Kanski et al., 2011)

(1) Outer lipid layer:

The lipid layer is approximately 0.1 µm thick. This superficial layer is secreted by Zeis and Meibomian glands of the lid. The thickness of the layer can be increased by forced blinking and conversely reduced by infrequent blinking. (*Xuan et al.*, 2001)

It is composed of a polar phase containing phospholipids lie adjacent to the aqueous-mucin interface and a non-polar phase containing waxes, cholesterol, esters and triglycerides lie at the tearair interface. The polar lipids are bound to lipocalins within the aqueous layer, which are small secreted proteins that have an important role in stabilizing the tear-film lipid layer by transferring lipids to it from the aqueous layer. (Mochizuki et al., 2009).

The function of this layer is to prevent evaporation of the aqueous layer to maintain tear film thickness and to act as a surfactant allawing spread of the tear film. (kanski et al., 2011)

(2) Middle aqueous layer:

This layer is about 8 µm thick, comprising most of the tear film thickness. The main lacrimal glands produce about 95% of the aqueous component of tears and the accessory lacrimal glands of Krause and wolfring produce the reminder. It is composed of water, electrolytes, dissolved mucin, proteins, growth factors drived from