The Evaluation of Fundus Autofluorescence as A Prognostic Factor for Post Injection Visual Improvement in Diabetic Macular Edema

Thesis

Submitted for Partial Fulfillment of MD Degree in **Ophthalmology**

 $\mathcal{B}y$

Lameece Moustafa Mohamed M.B.B.Ch, MSc.

Under Supervision of

Prof. Dr. Sherif Mohamed Sheta

Professor of Ophthalmology Faculty of Medicine, Cairo University

Prof. Dr. Randa Mahmoud Abdel Razek

Professor of Ophthalmology Faculty of Medicine, Cairo University

Prof. Dr. Gihan Helmy Abdel Halim

Professor of Ophthalmology Faculty of Medicine, Cairo University

 $\mathcal{D}r$. Dina Mohamed Saiid El Fayoumi

Lecturer of Ophthalmology Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2016

Acknowledgements

To be one of Dr. Sherif Mohamed Sheta, Professor of Ophthalmology, Cairo University, pupils is a great honor. I cannot express my gratitude for his fatherly care, continuous guidance and the endless knowledge he generously passes on. He will always inspire me and I will always strive to make him proud.

I wish to offer my sincere thanks to Prof. Dr. Randa Mahmoud Abdel Razek, Professor of Ophthalmology, Cairo University, for her immense assistance and great support, which have always been beyond description.

Many thanks to Prof. Dr. Gihan Helmy Abdel Halim, Professor of Ophthalmology, Cairo University for her great help and patience with me during the accomplishment of this work.

I would like to thank Dr. Dina Mohamed Saiid El Fayoumi, Lecturer of Ophthalmology for her endless support morally and scientifically in order for me to complete this work.

LIST OF CONTENTS

	Page
Abstract	III
List of Abbreviations	IV
List of Figures	VI
List of Tables	IX
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE:	
• CHAPTER I: Pathogenesis and Clinical Manifestations of Diabetic	
Macular edema	5
■ CHAPTER II: Methods of Investigating Diabetic Macular Edema	13
■ CHAPTER III: Lines of Management of Diabetic Macular Edema	55
PATIENTS AND METHODS	64
RESULTS	73
DISCUSSION	97
CONCLUSION & RECOMMENDATIONS	107
SUMMARY	110
REFERENCES	112
ADARIC SUMMADV	

ABSTRACT

Purpose: To detect fundus autofluorescence patterns in cases of diabetic macular edema prior to and following intravitreal injections of bevacizumab and to determine if these changes correlate with visual acuity and serve as prognostic factors

Design: randomized, prospective interventional study

Methods: forty eyes with non-ischemic cystoid or diffuse edema underwent SW-FAF imaging with a cSLO prior to and after three intravitreal injections of bevacizumab and pattern of hyperautofluorescence was determined (number and total area of hyperautofluorescent spots). SD OCT was done to determine the CFT, integrity of the IS/OS junction and detect other visually significant findings. The primary outcome was to determine the changes in FAF and the secondary outcome was determining whether there is an association between baseline and post injection visual acuity and FAF findings.

Results: 35 cases (87.5%) had abnormal foveal hyperautofluorescence: four showed a single spot of hyperautofluorescence (11.4%) and 31 showed multiple spots (88.6%). Pre injection the mean BCVA was best for those with no then multiple then single spots and post injection, the BCVA was best for those with multiple spots then no spots then single spots, but the differences were non significant. The total area of hyperautofluorescent spots was significantly greater for single than multiple spots both pre and post injection. On subdivision of cases into groups according to the change in their BCVA, in 23 cases the visual acuity improved, 15 remained the same and 2 cases deteriorated. The improved viusal acuity group had lower CFT, less hyperautofluorescent spots and a slightly greater total area of hyperautofluorescence but the differences were not significant.

Conclusion: there are certain FAF patterns in DME, but they cannot be definitively correlated with vision or prognosis following therapy.

Key Words: Fundus autofluorescence, diabetic macular edema, OCT, anti-VEGF therapy, bevacizumab

List of Abbreviations

AF : Autofluorescence

AMD : Age related macular degeneration

BCVA : Best corrected visual acuity

BRB : Blood retinal barrier

CFT : Central foveal thickness

CMT : Central macular thickness

CNVM: Choroidal neovascular membrane

CSCR : Central Serous chorioretinopathy

cSLO : Confocal scanning laser ophthalmoscopy

CSME : Clinically significant macular edema

DME : Diabetic macular edema

ELM : External limiting membrane

ETDRS: Early treatment diabetic retinopathy study

FAF : Fundus autofluorescence

FAZ: Foveal avascular zone

Fc : Fragment crystallizable

FFA : Fundus fluorescein angiography

GA : Geographic atrophy

GCL : Ganglion cell layer

HRA : Heidelberg retinal angiograph

ILM : Internal limiting membrane

INL : Inner nuclear layer

IPL : Inner plexiform layer

IRMA : Intraretinal microvasular abnormalities

IS/OS : Internal segment/ outer segment

MP : Macular pigments

MPOD : Macular pigment optical density

NFL : Nerve fiber layer

NIR : Near infrared

NPDR : Non proliferative diabetic retinopathy

NSD : Neurosensory detachment

OCT : Optical coherence tomography

ONL : Outer nuclear layer

OPL : Outer plexiform layer of Henle

PVD : Posterior vitreous detachment

RPE: Retinal pigment epithelium

RVO: Retinal vein occlusion

SD : Spectral domain

SW : Short wavelength

VEGF : Vascular endothelial growth factor

List of Figures

Figure No.	Title	Page
1.	Topographic Anatomy of the macula	5
2.	Pathogenesis of DME	9
3.	Diffuse Exudative Maculopathy	10
4.	Focal Exudative Maculopathy	11
5.	Ischemic Maculopathy	11
6.	Ischeamic Maculopathy	14
7.	Focal Maculopathy	15
8.	Diffuse Maculopathy	15
9.	Cystoid Macular Edema	16
10.	Mixed Maculopathy	16
11.	Spectral/FD-OCT system	17
12.	Retinal Layer Segmentation	18
13.	Optical coherence tomography (OCT) of normal macula	19
14.	OCT scan of intraretinal exudates	20
15.	OCT scan of epiretinal membranes	21
16.	OCT scan of diffuse macular edema	21
17.	OCT scan of cystoid macular edema	22
18.	Posterior hyaloid traction	22
19.	Cystoid Macular Edema with Shallow Foveal Detachment	23
20.	Microperimetry map	26
21.	Clearance of photoreceptor outer segments by RPE	28
22.	A2E molecule	29
23.	Emission spectrum of Lipofuscin	29
24.	Normal SW-AF	32
25.	FAF normally increases with age	33
26.	SW-AF versus NIR- AF	34
27.	Autofluorescence of GA	35
28.	Stargardt's disease	36

Figure No.	Title	Page
29.	Best's Disease	37
30.	Cone Rod Dystrophy	38
31.	Rod Cone Dystrophy	38
32.	Plaquenil Toxicity	39
33.	Acute CSCR	40
34.	Chronic CSCR	40
35.	Junctional Zones of GA on FAF	42
36.	CNV membrane	43
37.	FAF with 488nm and 580nm excitation	45
38.	Patient with CME imaged by FFA and FAF	46
39.	Patient with suspected CME	46
40.	Results of Pece et al., 2010	47
41.	Right eye with resolved macular edema (no hyperautofluorescence) and left eye with residual macular edema (persisting hyperautofluorescence in the fovea)	48
42.	Resolving macular edema	49
43.	Correlating CSME findings	50
44.	Grading of FAF	41
45.	DME on two-wavelength FAF and MPOD imaging	53
46.	FAF Patterns	54
47.	Argon Focal laser photocoagulation	57
48.	Grid laser photocoagulation	58
49.	Eylea mechanism of action	61
50.	Topcon TRC-50DX	66
51.	Spectralis HRA+OCT	66
52.	Spectralis OCT scan pattern selection	68
53.	Mulitmodal Imaging on Spectralis. Image 3 is an example of SW-FAF	69
54.	ETDRS Grid Overlay Option	70
55.	Spot Overlay Option	70
56.	FAF patterns	74

Figure No.	Title	Page
57.	Distribution of Patients according to change in Visual Acuity following three Intravitreal Injections	77
58.	Comparison between mean values of CFT measured pre- and post-treatment in the two studied groups	80
59.	Comparison between mean total area of hyperautofluorescent spots measured pre- and post-treatment in the two studied groups	81
60.	Comparison between mean values of the change (pre and post injection) in both CFT and total area of hyperautofluorescent spots in the two studied groups	82

List of Tables

Table No	Title	Page
1.	Comparision between Pre-injection and Post-injection Values in all Patients	75
2.	Descriptive Characteristics in OCT and FAF	75
3.	Comparison between Pre and Post injection Values in Patients with Intact and Interrupted IS/OS junctions	76
4.	Descriptive Findings in the Imaging in Subgroups of Cases	77
5.	Description of Third Group (Worsened Visual Acuity)	78
6.	Comparison between Pre and Post injection Values in Groups 1 and 2 (Improved and Stationary BCVA)	79
7.	a. Comparison between Pre and Post Injection BCVA within the Two Main Groupsb. Comparison between Mean Pre and Post Injection CFTs within the Two Main Groups	89
8.	Comparison between Mean Number of Hyperautofluorescent Spots Pre and Post Injection within the Two Main Groups	80
9.	Comparison between Mean Pre and Post Injection Total Area of Hyperautofluorescent Spots within the Two Main Groups	80
10.	Comparison between mean change (pre and post injection) in both CFT and total area of hyperautofluorescent spots in the two studied groups	81
11.	Correlation Between Change in CFT, Total Area of Hyperautofluorescent Spots and BCVA in Improved Visual Acuity Group	83
12.	Correlation between difference in CFT and area of hyperautofluorescent spots in stationary vision group	83

INTRODUCTION

Diabetes mellitus, in the year 2014 affected 9% of adults 18 years and older worldwide. This percentage continues to increase and it is estimated that diabetes will affect 366 million people by the year 2030 ⁽¹⁾. Despite advances in the treatment of diabetic retinopathy, macular edema remains the leading cause of blindness in the diabetic population. Macular edema affects up to fourteen percent of all diabetic patients ⁽²⁾.

The pathogenesis of macular edema is multi-factorial, mainly resulting from breakdown of the blood retinal barrier (BRB). The mechanism of BRB breakdown results from loss of pericytes and endothelial cells and increased permeability of the surface membranes of retinal vessels and retinal pigment epithelium cells ⁽³⁾. This disruption leads to abnormal inflow of fluid into the neurosensory retina, which on accumulation exceeds the outflow and collects in the intraretinal layers of the macula ⁽³⁾.

The cause of visual loss in diabetic macular edema (DME) is not entirely clear and there is little information in the literature about the effect on local visual function of the specific lesions found in diabetic retinopathy⁽⁴⁾.

The functional impact of DME is usually determined by the quantification of best-corrected visual acuity, which is influenced by many factors, not only by macular thickness. Thus, for a given degree of maculopathy, a wide range of visual acuities may be observed ⁽⁵⁾.

Various treatments, such as focal/grid laser photocoagulation, intravitreal injection of anti-vascular endothelial factor (VEGF) agents or triamcinolone acetonide and vitrectomy have been reported for the resolution of DME. In many cases this leads to an improvement in visual acuity, while in others (despite the complete resolution of macular edema) the visual outcome remains poor ⁽⁶⁾.

Use of spectral domain optical coherence tomography (SD OCT) is the gold standard for diagnosis and follow-up of DME in clinical practice. However, it has failed to become an indicator for visual function or prognosis, as it shows only moderate correlation with best corrected visual acuity ⁽⁷⁾.

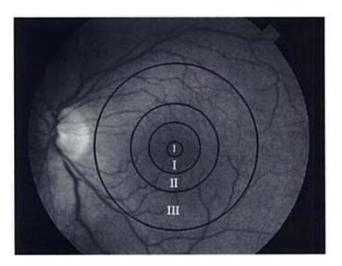
On the other-hand, the role of fluorescein angiography in diabetic macular edema remains mostly in the assessment of macular perfusion and not an indicator of macular function ⁽⁸⁾.

Fundus autofluorescence (FAF) is not a new technique for in vivo imaging, which is most likely affected by the lipofuscin content in the retinal pigment epithelium ⁽⁶⁾.

Fundus autofluorescence of diabetic macular edema was shown to be associated with increased autofluorescence in the macular area, which could result from lateral displacement and reduction in the density of macular pigments, decreasing the blockage of the autofluorescence signal from the retinal pigment epithelium (RPE) ⁽⁹⁾.

Areas of increased autofluorescence have been found to correlate with visual prognosis. Increased level of FAF was associated with functional and structural impairment of the macula in patients with DME. Vision in patients with multilobulated FAF pattern was worse than in patients with single-lobulated FAF (10).

Fundus autofluorescence is a rapid and noninvasive technique yet to be routinely used in the evaluation of diabetic macular edema. It may allow correlation of structural and functional parameters and subsequently the identification of new DME patterns, which may be responsible for different responses to local treatments. Therefore, therapeutic regimens based on OCT macular thickness or fluorescein angiography leakage alone may be not as efficient as expected, giving rise to the role of FAF in more appropriate tailoring of DME treatment.


AIM OF WORK

The aim of this study is to determine the changes in fundus autofluorescence patterns in patients with diabetic macular edema before and after intravitreal injection of bevacizumab. This will then allow detection of any association between visual acuity and fundus autofluorescence findings in DME and if there is a correlation between the FAF patterns and the patient's response to intravitreal therapy. This will help determine whether fundus autofluorescence, a noninvasive investigation, is an appropriate means of follow-up of DME and if it is more functionally sensitive than OCT determined changes in macular thickness.

CHAPTER I

Diabetic Macular Edema: Pathogenesis and Clinical Manifestations

The macula and specifically the fovea are the pivotal regions for vision in the retina. It is defined anatomically as the portion of the posterior retina that contains xanthophyll pigments and two or more layers of ganglion cells. It lies approximately 4 mm temporal and 0.8mm inferior to the center of the optic disc and is 5.5 mm in diameter. It is subdivided into several zones (Fig. 1). The fovea is the central depression approximately one disc diameter (1.5mm) and its central floor is the foveola (0.35mm). The umbo is a small depression at the center of the foveola. The fovea is surrounded by the parafoveal region, which is surrounded by an outer 1.5mm of perifoveal region (11).

Fig.1: Topographic Anatomy of the macula. Subdivided into zones: I. Fovea with central foveola (1), II. Parafovea, III. Perifovea (11).

Many studies have been carried out to determine the normal variants of macular thickness. *Wakitani et al.*, used optical coherence tomography