

Ain shams university
Faculty of Medicine
Department of Anesthesia and Intensive care and Pain Management

COMPARATIVE STUDY BETWEEN ULTRASOUND GUIDED TRANSVERSUSÄBDOMINIS NERVE BLOCK AND CAUDAL EPIDURAL ÄNESTHESIA IN PEDIATRIC PATIENTS UNDERGOING LOWER ÄBDOMINAL SURGERY.

<u>Thesis submitted for partial fulfillment of M.D. degree in anesthesiology</u>

Presented by:

MOHAMED AHMED IBRAHIM OSMAN

М.В.В.СН.-M.Sc in Anesthesia

Supervised by:

Professor DR. / SAMIA IBRAHIM SHARAF

Professor of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

Professor DR. / HALA GOMAA SALAMA

Professor of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

DR. / ABD ELAZIZ ABD ALLAH ABD ELAZIZ

Lecturer of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

> Ain shams university Faculty of Medicine 2015

بسو الله الرحمن الرحيم

حدق الله العظيم

(البقرة: ٣٢)

Acknowledgment

Thanks are all to ALLAH, the beneficent and the merciful, for blessing me this work until it reached its end, as a little part of his generous help throughout my entire life.

I would like to express my deepest gratitude, thanks and appreciation to **Prof. Dr. SAMIA IBRAHIM SHARAF**, Professor of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University, for her enthusiastic support, continuous encouragement, valuable generous advice, and great help throughout this work.

I am very grateful to **Prof. Dr. HALA GOMAA SALAMA**, Professor of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University, for her kind supervision, support, indispensable suggestion, and guidance in preparing this thesis.

I am heavily indebted to **Dr. ABD ELAZIZ ABD ALLAH ABD ELAZIZ,** Lecturer of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University, whose encouragement, guidance and support from the initial to the final stages enabled me to carry on.

Also, Special thanks to my family, friends and Colleagues for their sincere support and care.

CONTENTS

AcknowledgementI
List of tablesIII
List of figuresIV
• List of abbreviationsVI
• INTRODUCTION1
• AIM OF THE WORK3
• REVIEW OF LITERATURE
Chapter 1.ANATOMICAL OVERVIEW4
Chapter 2.LOCAL ANESTHETICS13
Chapter 3ULTRASOUND-GUIDED NERVE
BLOCKS19
Chapter 4. TRANSVERSUS ABDOMINIS PLANE
BLOCK33
Chapter 5.CAUDAL EPIDURAL ANESTHESIA IN
PEDIATRICS54
• PATIENTS AND METHODS74
• RESULTS84
• DISCUSSION107
• CONCLUSION125
• ENGLISH SUMMARY126
• REFERENCES129
• ARABIC SUMMARY142

List of Tables

No	Table	
Table (1)	Surgeries using the transversusabdominis plane block	51
Table (2)	Pharmacokinetics pattern of local anesthetics in neonates and small infants	
Table (3)	Modified Objective Pain Score (MOPS)	82
Table (4)	Demographic data	
Table (5)	Intraoperative heart rate changes	
Table (6)	Intraoperative respiratory rate changes	
Table (7)	Intraoperative MAP changes	91
Table (8)	Postoperative heart rate changes	
Table (9)	Postoperative MAP changes	
Table (10)	Comparison between both groups as regard MOPS	
Table (11)	Comparison between both groups as regard duration of postoperative analgesia	102
Table (12)	Comparison between both groups as regard rescue analgesia	103
Table (13)	The incidence of complications in group A	105
Table (14)	The incidence complications in group B	106

List of Figures

No.	Figure	Page
Figure (1)	Cutaneous innervation of the abdominal wall	5
Figure (2)	spinal nerves pathway and branches in the abdominal wall	6
Figure (3)	Drawing of the anatomy of the abdominal wall, including the lumbar triangle of Petit	8
Figure (4)	Skeletal model demonstrating the sacral hiatus and the ventral sacral surface	9
Figure (5)	Epidural space: Midline sagittal view and Axial view	10
Figure (6)	Ultrasound wave form	20
Figure (7)	Axis of scan: Transverse scan, Longitudinal scan	21
Figure (8)	Needle-probe alignment	24
Figure (9)	Axis of intervention. Out-of-plane and in-plane techniques.	24
Figure (10)	hydrodissection technique	29
Figure (11)	Ultrasound image of the lateral abdominal wall demonstrating the relationship between the structures above and below the transversusabdominis plane (TAP).	37
Figure (12)	Surface anatomy of the Petit's triangle. And Site of needle insertion for landmark-based transversusabdominis plane (TAP) blocks.	38
Figure (13)	Typical distribution of nerves in the transversusabdominis plane (TAP).	40
Figure (14)	Probe positioning in TAP block	44
Figure (15)	The three layers of the abdominal wall as recognized by U/S	45
Figure (16)	Needle placement and injection in TAP block	46
Figure (17)	Patient Positioning in caudal block	63
Figure (18)	Landmarks for caudal block	64
Figure (19)	Needle advancement in caudal block	65
Figure (20)	Dermatomal distribution of different volumes of local anesthetic for single-shot caudal block	68
Figure (21)	Site of misplacement of the needle during caudal anesthesia	71
Figure (22)	A LOGIQ P5 portable ultrasound unit.	77

List of Figures (cont...)

Figure (23)	Linear ultrasound probe	78
Figure (24)	Local anaesthetic spread within the plan	79
Figure (25)	Demographic data	86
Figure (26)	Comparison between both groups as regard intraoperative heart rate	88
Figure (27)	Comparison between two groups as regard intraoperative respiratory rate	90
Figure (28)	Comparison between two groups as regard intra operative MAP	92
Figure (29)	Comparison between two groups as regard postoperative heart rate	94
Figure (30)	Comparison between two groups as regard postoperative MAP	97
Figure (31)	Comparison between both groups as regard MOPS	100
Figure (32)	Comparison between both groups as regard duration of postoperative analgesia	102
Figure (33)	Comparison between both groups as regard rescue analgesia	104
Figure (34)	The incidence of complications in group A	106

List of Abbreviations

Abbreviation	Meaning
2D	Two-dimensional
ASA	American society of anesthesiologists
ASIS	anterior superior iliac spine
b/m	beat per minute
CBC	Complete blood count
Cm	Centimeter
CNS	Central nervous system
D5W	Dextrose 5% in water
DGC	Depth-gain compensation
ECG	Electrocardiogram
Hz	Hertz
IH	Iliohypogastric
IN	Ilioinguinal
IV	Intravenous
Kg	Kilogram
kHz	Kilohertz
LA	Local anesthetic
m/sec	Meter per second
MAC	Minimum alveolar concentration
MHz	Megahertz
Ml	Milliliter
mm	Millimeter
mmHg	millimetre mercury
PL	Pulse length
PRF	Pulse Repetition Frequency
PZT	Lead zirocorantetitanate
TGC	Time gain compensation
TAP	TransversusAbdominis Plan

List of Abbreviations (cont...)

US	Ultrasound
USGRA	Ultrasound-guided regional anesthesia
mcg/Kg	Microgram per kilogram
MOPS	The Modified Objective Pain Score
Ml/kg	Milligram per kilogram
MAP	Mean arterial blood pressure
Min	Minute
Mg/kg	Milligram per kilogram
P	Probability
SD	Standard deviation
RR	Respiratory rate
HR	Heart rate
Hr	Hour
CHIPPS	Children and Infants Postoperative Pain Scale
vs.	Versus
%	Percent

Introduction

INTRODUCTION

Over 20 years ago, a survey reported that 40% of pediatric surgical patients experienced moderate or severe postoperative pain and that 75% had insufficient analgesia. Since that, a range of safe and effective techniques have been developed to overcome this problem (*Lonnqvistand Morton*, 2005).

Regional anesthetic techniques have gained considerable popularity for use with pediatric patients. The primary advantage of regional supplementation is lowering general anesthetic requirements intraoperatively and providing good postoperative pain relief (*Morganand Mikhail*, 1996).

Caudal anesthesia is the most frequently used regional technique in children; accounting for almost 50% of all regional techniques (*Dalens*, 1995). Its popularity is due its simplicity and high success rate (*Prosser etal*; 1997).

The transversusabdominis plane (TAP) block is a recently introduced technique of locoregional anesthesia for procedures that involve the abdominal wall (*O'Donnell et al; 2006*). Which helps in pain relief over the entire anterior

abdominal wall and reduction of the analgesia requirements in the early postoperative period (*French 2009*), (*Mukhtar*, *Singh 2009*).

Classically, the TAP block was described by Rafi and McDonell as a blind "double-pop" technique using a blunt needle introduced through the external and internal oblique muscles and fascia at the iliolumbar triangle of Petit (*Rafi 2001*), (*McDonnell et al; 2007*).

Because there is no distinctly palpable triangle of Petit in children, ultrasound may be especially valuable for determining the point of needle puncture during this block, So the transversus abdominis plane can be accessed anywhere between the iliac crest and costal margin behind the anterior axillary line also a higher subcostal approach may block the upper thoracolumbar nerves more effectively than a lower approach immediately above the iliac crest (Bani, & Santhanam 2010).

Aim Of The Work

AIM OF THE WORK

This study evaluated the use of ultrasound-guided TransversusAbdominis Block in pediatric patients undergoing lower abdominal surgeries in comparison with caudal epidural anesthesia regarding the efficacy, the onset of action, duration of action of the block and the incidence of complication.

Reveiw Of Literature