

HUMAN ACTION RECOGNITION UTILIZING VARIATIONS IN SKELETON DIMENSIONS

By

Mona Mohamed Mahmoud Moussa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

in

Computer Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

HUMAN ACTION RECOGNITION UTILIZING VARIATIONS IN SKELETON DIMENSIONS

By

Mona Mohamed Mahmoud Moussa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE (or DOCTOR OF PHILOSOPHY)

in Computer Engineering

Under the Supervision of

Prof. Dr. Magda B. Fayek	Prof. Dr. Elsayed E. Hemayed	
Professor Computer Engineering Department Faculty of Engineering, Cairo University	Professor Computer Engineering Department Faculty of Engineering, Cairo University	
Assoc. Prof. I	Heba A. Elnemr	
Associate	e Professor	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Computers and Systems Department Electronics Research Institute

HUMAN ACTION RECOGNITION UTILIZING VARIATIONS IN SKELETON DIMENSIONS

By
Mona Mohamed Mahmoud Moussa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
COMPUTER ENGINEERING

d by the

Approved by the
Examining Committee
Prof. Dr. Magda B. Fayek, Thesis Main Advisor
Prof. Dr. Elsayed E. Hemayed, Member
Assoc. Prof. Heba A. Elnemr, Member Associate professor, Computers and Systems Department, Electronics Research Institut
Prof. Dr. Reda Abd Elwahab Ahmed, Examiner Professor, Faculty of Computers and Information, Cairo university

Prof. Dr. Samia Abdel Razek Mashaly, Examiner Professor, Computers and Systems Department, Electronics Research Institute

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Mona Mohamed Mahmoud Moussa

Date of Birth: 2/3/1982 **Nationality:** Egyptian

E-mail: mona.moussa@gmail.com

Phone: 01001479222

Address: 9055 El Merag city- El Maadi- Cairo

Registration Date: 1/3/2010 **Awarding Date:** //2016

Degree: Doctor of Philosophy **Department:** Computer Engineering

Supervisors:

Prof. Magda B. Fayek Prof. Elsayed E. Hemayed Assoc. Prof. Heba A. Elnemr

Examiners:

Prof. Magda B. Fayek (Thesis main advisor)

Prof. Elsayed E. Hemayed (Member) Assoc. Prof. Heba A. Elnemr (Member)

Associate professor, Computers and Systems Department,

Electronics Research Institute

Prof. Reda Abdel Wahab Ahmed (Examiner)

Professor, Faculty of Computers and Information, Cairo university

Prof. Samia Abdel Razek Mashaly (Examiner)

Professor, Computers and Systems Department, Electronics

Research Institute

Title of Thesis:

Human action recognition utilizing variations in skeleton dimensions

Kev Words:

Human action recognition, skeletal data, action high-level representation, computer vision

Summary:

The proposed work is a human action recognition system that relies on the amount and shape of change of different body parts to recognize a given action in a recorded video. The system can deal with videos recorded using traditional cameras as well as depth-sensing cameras. Newly proposed features are extracted and encoded to describe the visual way of change of human body parts. The first step in the technique is skeleton extraction for the subject person. Then, novel features are extracted from this skeleton and encoded to obtain a limited short length code that represents the whole video. Training and testing step were performed using benchmark datasets, namely: KTH, Weizmann, Berkeley, MSR-action3D.

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. Above all, I would like to offer my heartfelt thankfulness to Prof. Magda B. Fayek, Prof. Elsayed E. Hemayed and Assoc. Prof. Dr. Heba A. Elnemr who made this thesis possible. Throughout, they provided me with valuable support and gave generously of their time and experience. I would like to extend my gratitude to all people who taught me during the past years.

I would like also to thank my parents who were my first instructors in this world. Since I was a child, they have been doing their best to help and encourage me towards success. Feeling especially indebted to them, I wish them all the best and do hope that one day, I will be able to equally reward them (if an equal reward is ever possible). I also want to thank my family for their constant support.

PUBLICATIONS

Moussa, M. M., Hamayed, E., Fayek, M. B., & El Nemr, H. A. 2013. An enhanced method for human action recognition. Journal of Advanced Research, 6(2) (pp. 163-169)

Moussa, M. M., Hamayed, E., El Nemr, H. A. , & Fayek, M. B. Human action recognition utilizing variations in skeleton dimensions. Under review

TABLE OF CONTENTS

ACKNOWLEDGMENTS	i
Publications	ii
Table of Contents	iii
List of tables	v
List of figures	vi
Nomenclature	vii
Abstract	. viii
Chapter 1: Introduction	1
1.1. Introduction	1
1.2. Problem Statement	1
1.3. Human activity recognition hierarchy	2
1.3.1. Single-layered approaches	4
1.3.1.1. Space-time approach	4
1.3.1.2. Sequential approach	4
1.3.2. Hierarchical approach	5
1.3.2.1. Statistical approach	5
1.3.2.2. Syntactic approach	5
1.3.2.3. Description-based approach	5
1.4. Thesis Outline	6
Chapter 2 : Literature survey	7
2.1. Introduction	7
2.2. Activity recognition using LD-HAR	7
2.3. Activity recognition using BM-HAR	10
Chapter 3: Methodology	14
3.1. Introduction	14
3.2. Human action recognition using BM-HAR	14
3.2.1. Skeleton Extraction	15
3.2.2. Feature extraction from a skeleton	20
3.2.2.1. Parameters extracted from 2D videos	20
3.2.2.2 Parameters extracted from 3D videos	22

3.2.3.	Free handwriting actions	25
3.2.3	3.1. Circle drawing detection	26
3.2.3	3.2. Cross drawing detection	29
3.2.3	3.3. Tick mark drawing detection	31
3.2.4.	Features encoding	33
3.2.5.	Classification	36
3.3. Hu	man action recognition using LD-HAR	38
3.3.1.	Enhanced interesting points detection	38
3.3.2.	Features description	42
3.3.3.	Building and normalizing the codebook	42
3.3.4.	Classification	45
Chapter 4: 1	Experimental Results	46
4.1. Int	roduction	46
4.2. Da	tasets Used	46
4.2.1.	KTH dataset	46
4.2.2.	Weizmann dataset	48
4.2.3.	MSR-Action3D Dataset	50
4.2.4.	Berkeley MHAD Dataset	53
4.3. Ex	periments on human action recognition using BM-HAR	56
4.3.1.	Relation between parameters and actions	56
4.3.2.	Weizmann Dataset	58
4.3.3.	Berkeley dataset	58
4.3.4.	MSR-Action3D dataset	59
4.3.5.	Action recognition across datasets	61
4.4. Ex	periments on human action recognition using LD-HAR	62
4.4.1	KTH dataset	62
4.4.2	Weizmann Dataset	64
4.5. Co	mparison with other methods	65
Chapter 5:	Conclusion and future work	68
5.1. Co	nclusion	68
5.2. Fut	ture work	69
Deferences		70

LIST OF TABLES

Table 4.1: The three action subsets of MSR-Action 3D dataset	52
Table 4.2: The relation between the features and the different actions for Weizmann data	
Table 4.3: The relation between the features and the different actions for MSR-Action	
and Berkeley datasets	57
Table 4.4: Confusion matrix of Weizmann dataset	58
Table 4.5: Confusion matrix of Berkeley MHAD dataset	59
Table 4.6: Confusion matrix of subset AS1 of MSR-Action3D dataset	60
Table 4.7: Confusion matrix of subset AS2 of MSR-Action3D dataset	60
Table 4.8: Confusion matrix of subset AS3 of MSR-Action3D dataset	61
Table 4.9: Confusion matrix of across dataset testing	61
Table 4.10: Confusion matrix of KTH dataset using ℓ1-Normalization	62
Table 4.11: Confusion matrix of KTH dataset using ℓ2-Normalization	62
Table 4.12: Confusion matrix of KTH dataset using power-Normalization	63
Table 4.13: Confusion matrix of KTH dataset using the proposed normalization	63
Table 4.14: Achieved accuracy using the proposed normalization method for each of	the
four scenarios	63
Table 4.15: Comparing the proposed normalization method with ℓ1-Normalization, ℓ	€2-
Normalization and Power-Normalization	64
Table 4.16: Confusion matrix of Weizmann dataset	64
Table 4.17: Comparison with other methods for Weizmann dataset	65
Table 4.18: Comparison with other methods for Berkeley dataset	66
Table 4.19: Comparison with other methods for MSR-Action3D dataset	66
Table 4.20: Comparison with other methods for KTH dataset	67

LIST OF FIGURES

Figure 1.1: Human activity recognition hierarchy	3
Figure 3.1: A block diagram of the proposed system.	15
Figure 3.2: Finding a person in an image	
Figure 3.3: Skeleton extraction, waving two hands action	
Figure 3.4: Skeleton extraction, walking action	
Figure 3.5: Skeleton extraction evaluation.	
Figure 3.6: Parameters extracted from 2D videos	
Figure 3.7: Extracted skeleton from 2D video	
Figure 3.8: Parameters extracted from 3D videos	
Figure 3.9: Some sketches extracted using free hand writing-tracking	
Figure 3.10: A circle drawing detection	
Figure 3.11: A cross drawing detection	29
Figure 3.12: A tick mark detection	31
Figure 3.13: Parameter and video encoding	34
Figure 3.14: Using legs locations to differ between moving and non-moving actions	34
Figure 3.15: Using slope of change for legs location to discriminate between mo	
actions	35
Figure 3.16: Using amount of change for Left lower width parameter to discrimi	
between moving actions	35
Figure 3.17: Bell shape of change for some parameters for non-moving actions	36
Figure 3.18: The optimum hyper-plane between two classes of data	37
Figure 3.19: Steps for action recognition using local features	38
Figure 3.20: The effect of adapting the SIFT threshold on the number of interest points	
Figure 3.21: An object and it's bag of words	43
Figure 3.22: Example for BoVW	
Figure 3.23: The effect of changing the codebook size on the results accuracy	45
Figure 4.1: KTH dataset actions	47
Figure 4.2: Weizmann dataset actions	
Figure 4.3: Snapshots for the MSR-3D action dataset	51
Figure 4.4: Skeleton joint names and locations as specified by the Kinect sensor	53
Figure 4.5: Snapshots for the Berkeley MHAD Dataset actions	54
Figure 4.6: Skeleton extracted from the Berkeley MHAD Dataset	55

NOMENCLATURE

AdaBoost	Adaptive boosting
ADI	Average depth image
BM-HAR	Body modeling-human action recognition
BoVW	Bag of Visual Words
BST	Binary shape templates
CFG	Context-free grammars
DBN	Dynamic Bayesian networks
DDI	Depth difference image
DoG	Difference of Gaussians
FIS	Fuzzy Inference System
HAR	Human action recognition
HMM	Hidden Markov model
HOG	Histogram of oriented gradients
LD-HAR	Local descriptors-human action recognition
LDA	Latent dirichlet allocation
LoG	Laplacian of gaussian
MAP	Maximum a posteriori probability
MHI	Motion history image
MHT	Motion history templates
MLE	Maximum likelihood estimation
MMI	Maximization of mutual information
MoCap	Motion capture
MoSift	Motion-scale invariant feature transform
pLSA	Probabilistic latent semantic analysis
SCFGs	Stochastic context-free grammars
SIFT	Scale invariant feature transform
SMIJ	Sequence of the most informative joints
SVM	Support vector machine

ABSTRACT

This thesis presents an integrated automatic human action recognition system that distinguishes between different actions using a new set of features based on global variation in the visual appearance of the subject body. The proposed technique utilizes the changes in human body dimensions, during performing an action, to extract this feature set. These dimension variations are calculated from the human body skeleton performing the action to be recognized. The skeleton can be extracted from a video captured using traditional 2D cameras or depth sensing cameras. Finally, a multi-class linear support vector machine is employed in the classification stage.

Experiments are conducted on Weizmann, Berkeley MHAD, and MSR-Action3D datasets. The results show that the proposed technique achieves an accuracy of 98.9% for Weizmann, 99.63% for Berkeley MHAD, and 94.3% for MSR-Action3D. Moreover, a cross-dataset experiment is held to ensure the generality of the proposed technique, where the system is trained using Berkeley MHAD dataset and tested using MSR-Action3D, achieving accuracy of 88.76%.

The thesis includes as well an experiment that was held to recognize human activities using local descriptors by extracting a group of interesting points from each frame of the video. Scale-invariant feature transform (SIFT) algorithm is used to obtain the group of interesting points. An adapting step is performed to limit the number of interesting points depending on the degree of details. Then, the well-known approach Bag of Visual Words (BoVW) is applied with a new proposed normalization technique. The proposed normalization technique improves the results remarkable. Finally, a multi-class linear support vector machine is used for classification.

When utilizing local descriptors, experiments were held on the KTH and Weizmann datasets, achieving an accuracy of 96.66% for Weizmann and 97.89% for KTH.

CHAPTER 1: INTRODUCTION

1.1. Introduction

Video analysis of human activities is an area with increasingly significant consequences from security and surveillance to entertainment and personal archiving. Human motion analysis can be categorized into three groups: human activity recognition, human motion tracking, and body parts movement analysis.

- **Human activity recognition:** recognizes the actions of one or more person of a group of observations on the person's activity and the surrounding environmental conditions. The aim of this branch is to support different applications (as computer vision and surveillance applications); also, it is connected to a number of fields of study such as human-computer interaction, medicine, and sociology.
- **Human motion tracking:** here the objective is to correlate target objects in consecutive video frames. The correlation is a difficult task if the objects are moving fast relative to the frame rate or if there are changes in the object orientation over time. Two of the standard target representations and localization algorithms are:
 - Kernel-based tracking: an iterative localization process based on maximizing the similarity measure
 - Contour tracking: iteratively evolves an initial contour initialized from each frame to its position in the successive frame. Here contour tracking directly evolves the contour by minimizing the contour energy using gradient descent.
- Motion analysis of body parts: tracks the location and orientation of body parts, it becomes an investigative and diagnostic tool in some areas as medicine, sports, video surveillance and kinesiology (the scientific study of human movement).

1.2. Problem Statement

The aim of the presented work is to automatically recognize actions of one or more persons using observations on the their activities. Human action recognition is an important branch of computer vision and pattern recognition due to its broad range of applications such as surveillance video, robot vision, content-based video retrieval, automatic video indexing and retrieval, and human-computer interaction. Videos can be recorded by either 2D cameras or 3D cameras.

Recently RGBD cameras such as Microsoft Kinect are used to detect human activity where they add an extra dimension, which is the depth that the traditional 2D cameras fail to provide. Sensor information captured through depth cameras can be used to generate real-time human skeleton model describing different body positions, this model can be further used to define human activities.

Vision-based human action recognition is the task of labeling videos containing human motion with action classes to identify a person's action. The task is challenging due to variations in motion performance, recording settings and inter-personal differences. Some methods have been used to achieve vision-based action recognition such as optical flow, Kalman filtering, Hidden Markov models. In addition, multiple aspects are considered on this topic as single agent tracking, group tracking, and detecting dropped objects.

1.3. Human activity recognition hierarchy

Figure 1.1 presents a hierarchal taxonomy for human action recognition as proposed by Aggarwal [1]. Action recognition process is mainly divided into two branches single-layered approaches and hierarchical approaches.

Single-layered approaches includes:

- Space-time approaches
 - Space-time volume
 - o Trajectories
 - Space-time features
- Sequential approaches
 - o Exemplar-based
 - o State-based

Hierarchical approaches includes:

- Statistical
- Syntactic
- Description-based

It is worth noting that, the above taxonomy is not sharply divided; a technique can combine more than one approach to perform human action recognition.

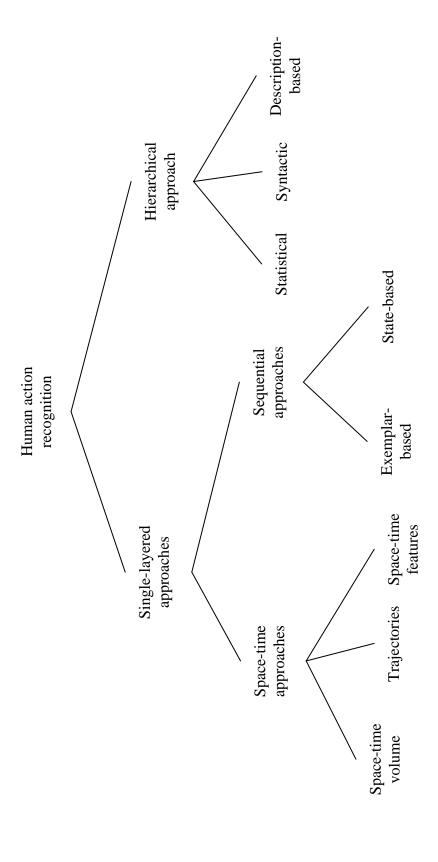


Figure 1.1: Human activity recognition hierarchy