

Ain Shams University Faculty of Engineering Structural Engineering Department

BEHAVIOUR AND DESIGN OF CONCRETE-FILLED STEEL TUBE COLUMNS

By

Eng. Mahmoud Mohamed Elsayed Marzuk

B.Sc. 2009, Civil Engineering, Structural Engineering Faculty of Engineering, October 6 University

A Thesis

Submitted in partial fulfillment for the requirements of the Degree of Master of Science in Structural Engineering

Supervised by

Prof. Dr. Ezzeldin Yazeed Sayed-Ahmed

Professor of steel structure Structural Engineering Department Faculty of Engineering Ain Shams University

Prof. Dr. Ahmed Abdelsalam El-Serwi

Professor of steel structure Structural Engineering Department Faculty of Engineering Ain Shams University

Cairo-2015

STATEMENT

This thesis is submitted to Ain shams University, Cairo,

Egypt, for the degree of Master of Science in Civil

Engineering (Structural Engineering).

The work included in this thesis was carried out by the

author in the Department of Structural Engineering, Faculty of

Engineering, Ain Shams University, from 2010 to 2015

No part of this thesis has been submitted for a degree or

a qualification to any other University or Institution.

Name

: Mahmoud Mohamed Elsayed Marzuk

Date

: / / 2015

Signature

i

Ain Shams University Faculty of Engineering Structural Engineering Department

Approval Sheet

Name : Mahmoud Mohamed Elsayed Marzuk

Title of thesis: BEHAVIOUR AND DESIGN OF CONCRETE-FILLED STEEL TUBE COLUMNS

Degree : Master of Science in Civil Engineering (Structural)

Examining Committee	<u>Signature</u>
Prof. Dr. Osama El hosieny Abdelsalam Professor of steel structure Zagazig University	
Prof. Dr. Abdelrhem Khalil Desouky Professor of steel structure Ain Shams University	
Prof Dr. Ezzeldin Yazeed Sayed-Ahmed Professor of steel structure Ain Shams University (Supervisor)	•••••••••••••••••••••••••••••••••••••••

INFORMATION ABOUT THE RESEARCHER

d Mohamed Elsayed Marzuk
March 19th, 1987
Minia, Egypt
B.Sc. Degree in civil Engineering (g) Faculty of Engineering, October6

ACKNOWLEDGMENTS

I would like to express my deepest thanks and appreciation to Professor **Dr. Ahmed Abdelsalam El-Serwi**, for his continuous advice, keen interest, and valuable supervision and for his reviewing of the manuscript.

Profound gratitude and sincere appreciation to Professor **Dr. Ezzeldin Yazeed Sayed-Ahmed** for his direct supervision, valuable criticism, his usual and continuous support, and for his reviewing of the manuscript.

Finally, I would like to thank deeply my family for their continuous encouragement, overwhelming support, fruitful care, and patience, especially in the difficult times.

Mahmoud Mohamed Elsayed Marzuk

Behaviour And Design Of Concrete-Filled Steel Tube Columns

Master of Science, 2015 Mahmoud Mohamed Elsayed Marzuk Department of Structural Engineering, Ain Shams University

ABSTRACT

Concrete-filled steel tube (CFST) columns have been increasingly used in many modern structures. Their use provides high strength, high ductility, high stiffness and full usage of construction materials. In addition to these advantages, steel tubes surrounding concrete columns eliminate permanent form work, which reduces construction time. Furthermore, steel tubes not only assist in resisting axial loads, but also provide confinement to the concrete.

In this research, the behavior and design of concrete-filled steel tube columns under concentric and eccentric loads is studied. A nonlinear finite element model (FEM), using the multi-purpose FE program ANSYS 14 has been developed. The results obtained from the FEM are compared to those obtained from recent experimental results. The comparison indicated that the results of the model are evaluated to an acceptable limit of accuracy.

A parametric study has been conducted on CFST members under the effected of axial loads and combined action of axial load and bending moment. In this study, six different steel square cross-sections are used. The effects of flat width-to-thickness ratio, steel yield strength and concrete compressive cube strength have been studied.

Another parametric study has been conducted on CFST member under the effect of axial load and bending moment. Four different steel RHS are used, the effect of the same parameters previously mentioned are studied.

The results obtained from the FEM are compared to those from different design codes of practice. This compares showed that the studied results using codes are different from each other and from the FE results. Modifications on design codes equations are suggested to enhanced then accuracy.

Supervisors:	
Prof. Ezzeldin Yazeed Sayed-Ahmed	
Prof. Ahmed Abdelsalam El-Se	rwi

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
ABBREVIATIONS	xiv
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.2 Reason of Using Composite Columns	3
1.3 Advantages of Using Concrete-Filled Steel Tube	3
Columns	
1.3.1 Merits of Steel Tube	4
1.3.2 Merits of Concrete Core	5
1.4 Aim of the Research	6
1.5 Contents of the Thesis	7
CHAPTER 2: Literature Review	8
2.1 General	8
2.2 Factors Affecting Column Strength	9
2.2.1 Tube Width-to-Thickness Ratio	9
2.2.2 Column Length-to-Width Ratio	10
2.3 Design procedures in Different International Codes	11
2.3.1 Steel Tube Slenderness Limits in Current Codes	12
2.3.2 Material Strength Limits	14
2.3.3 Steel Tube Area Limits	15
2.3.4 Initial Imperfections Limits in Current Codes	16

2.3.5 Design Methods in Different International Codes	16
2.3.5.1 AISC, 2005	17
2.3.5.2 Eurocode 4 (EC4), 2004	18
2.3.5.3 ECP,2001.(2011) ASD	20
2.3.5.4 ECP,2007.(2011) LRFD	21
2.3.5.5 ECP, 2007 (Reinforced Concrete)	22
2.4.1 Behavior of CFST Columns under axial compression	22
2.4.1.1. tube column without intermediate stiffener	22
2.4.1.2 with intermediate stiffener	30
2.4.1.3 behaviors of CFST under combined	32
loading	
2.4.1.4 behavior CFS short columns	34
CHAPTER 3: Finite-Element Analysis And Verification	37
3.1 General	37
3.2 FINITE ELEMENT MODEL	37
3.2.1 Element Types	37
3.2.1.1 Steel Tube	38
3.2.1.2 Concrete Core	39
3.2.2 Modeling of Interface between	40
Concrete and Steel Tube	
3.2.3 Material Properties	41
3.2.3.1 Stress-Strain Relationship of Steel Tube	42
3.2.3.2 Stress-Strain Relationship of Concrete	44
3.2.4 Boundary condition and load application	45
3.3 Verification of the Finite element model	46
3.3.1 Verification of FEM Using (Matloub, 2009)	46
	47

	Experin	nental results					
	3.3.2	Verification	of	FEM	Using	Liu,	52
	(2005)	Experimental re	esults f	or eccent	rically loa	aded	
CHAP	TER 4: Ax	ially Loaded C	ompo	site Colu	mns		53
4.1	Introduction	on					53
4.2	2 Parametri	c Study					53
4	3 Effective	Width in differe	ent cod	les			55
4.4	4 Results						57
	4.4.1 Effe	ect of flat width-	to-thic	kness b/	t ratio		57.
	4.4.2 Eff	ect of flat width	-to-thi	ckness b	/t ratio w	ith	69
	Cor	nparison betwee	en com	posite co	lumn and		
	holl	ow steel column	n Pc/P	S			
	4.4.3 Effe	ect of Steel Yield	d Strer	$\operatorname{gth} F_y$			74
	4.4.4 Effe	ect of Steel Yield	d Strer	f	ith		82
	Com	nparison between	n com	posite col	umn and		
	holle	ow steel column	Pc/Ps	ī.			
	4.4.5 Effe	ect of Concrete (Compr	essive Sta	ength F _{cu}		87
СНАР	TER 5: Ec	centrically Loa	ded C	Composite	e Column	ıs	97
	.1 Introduc	•		•			97
5	.2 Parameti	ric Study					97
5	.3 Results	·					99
	5.3.1 Ef	fect of flat width	h-to-th	ickness i	<i>b/t</i> ratio		99
	5.3.2 Ef	fect of Steel Yie	eld Str	ength F_y			107
	5.3.3 Ef	fect of Concrete	e Comp	oressive S	Strength F	cu	113

CHAPTER 6: Summary And Conclusions	119
6.1 Summary	119
6.2 Conclusions	120
6.3 Recommendation for Further Research	121
REFERENCES	122

LIST OF TABLES

		Page			
2.1	Strength classes of concrete in EC4 (2004)	14			
3.1	Geometric and material properties (Matloub, 2009)				
3.2	Comparison between FEM results, Experiments from (Matloub. 2009)	48			
3.3	Geometric and material properties (Liu, 2005)	52			
3.4	Comparison between FEM results, Experiments from Liu,(2005)	52			
4.1	Geometric and material properties	64			
4.2	Comparison between ultimate load results from the	65			
	FEM and those predicted by different codes				
4.3	Geometric and material properties Details of specimens	70			
4.4	Geometric and material properties	77			
4.5	Comparison between ultimate load results from the	78			
	FEM and those predicted by different codes				
4.6	Comparison between composite column and hollow	83			
	steel column Pc/Ps				
4.7	Geometric and material properties	90			
4.8	Comparison between ultimate load results from the	91			
	FEM and those predicted by different codes				
5.1	Geometric and material properties	102			
5.2	Comparison between ultimate load results from the	102			
	FEM and those predicted by different codes				
5.3	Geometric and material properties	108			
5.4	Comparison between ultimate load results from the	108			
	FEM and those predicted by different codes				
5.5	Geometric and material properties	114			
5.6	Comparison between ultimate load results from the	114			
	FEM and those predicted by different codes				

LIST OF FIGURES

		Page
1.1	Different cross sections of composite columns	2
2.1	Width-to-thickness ratio of square and circular cross- sections	10
2.2	Different column length-to-width ratios	11
3.1	Geometry, node location, and coordinate system of 3-D spar SHELL181 (ANSYS Ver.14, 2012)	39
3.2	Solid65 (ANSYS Ver.14, 2012)	40
3.3	Stress-strain relationship of steel used in the present research	43
3.4	Stress-strain relationship of concrete	45
3.5	Typical model of CFST columns' components	46
3.6	Comparison between experimental (Matloub, 2009) and present FEM	51
4.1	Finite element model and geometric dimension	55
4.2	deformed shape for axially loaded Composite Columns	57
4.3	Relationship between b/t and P_{FEM}/P_u for SC 80	66
4.4	Relationship between b/t and P_{FEM}/P_u for SC 100	66
4.5	Relationship between b/t and P_{FEM}/P_u for SC 120	67
4.6	Relationship between b/t and P_{FEM}/Pu for SC 140	67
4.7	Relationship between b/t and P_{FEM}/Pu for SC 160	68
4.8	Relationship between b/t and P_{FEM}/Pu for SC 200	68
4.9	Relationship between b/t ratio and Pc/Ps ratio for SC80	71
4.10	Relationship between b/t ratio and Pc/Ps ratio for SC100	71
4.11	Relationship between b/t ratio and Pc/Ps ratio for SC120	72
4.12	Relationship between b/t ratio and Pc/Ps ratio for SC140	72
4.13	Relationship between b/t ratio and Pc/Ps ratio for SC160	73
4.14	Relationship between b/t ratio and Pc/Ps ratio for SC200	73
4.15	Relationship between F _y and P _{FEM} /Pu for SC 80	79
4.16	Relationship between F _v and P _{EEM} /Pu for SC 100	79

4.17	Relationship between F _y and P _{FEM} /Pu for SC 120	80
4.18	Relationship between F_y and P_{FEM}/Pu for SC 140	80
4.19	Relationship between F _y and P _{FEM} /Pu for SC 160	81
4.20	Relationship between F_y and P_{FEM}/Pu for SC 200	81
4.21	Relationship between b/t ratio and Pc/Ps ratio for SC80	84
4.22	Relationship between b/t ratio and Pc/Ps ratio for SC100	84
4.23	Relationship between b/t ratio and Pc/Ps ratio for SC120	85
4.24	Relationship between b/t ratio and Pc/Ps ratio for SC140	85
4.25	Relationship between b/t ratio and Pc/Ps ratio for SC160	86
4.26	Relationship between b/t ratio and Pc/Ps ratio for SC200	86
4.27	Relationship between F_{cu} and P_{FEM}/Pu for SC 80	92
4.28	Relationship between F_{cu} and P_{FEM}/Pu for SC 100	92
4.29	Relationship between F_{cu} and P_{FEM}/Pu for SC 120	93
4.30	Relationship between F_{cu} and P_{FEM}/Pu for SC 140	93
4.31	Relationship between F_{cu} and P_{FEM}/Pu for SC 160	94
4.31	Relationship between F_{cu} and P_{FEM}/Pu for SC 200	94
5.1	Finite element model and geometric dimension	98
5.2	Deformed shape for eccentrically loaded Composite Columns	99
5.3	Relationship between b/t and P_{FEM}/P_u for C1	103
5.4	Relationship between b/t and P_{FEM}/P_u for C2	103
5.5	Relationship between b/t and P_{FEM}/P_u for C3	104
5.6	Relationship between b/t and P_{FEM}/P_u for C4	104
5.7	Relationship between axial force and bending moment for	105
	b/t = 40	
5.8	The relationship between axial force and bending moment for $b/t=50$	105
5.9	Relationship between axial force and bending moment for	106
	b/t = 60	
5.10	Relationship between axial force and bending moment for b/t= 100	106

5.11	Relationship between F _y and P _{FEM} /P _u for C1	109
5.12	Relationship between F_y and P_{FEM}/P_u for C2	109
5.13	Relationship between F_y and P_{FEM}/P_u for C3	110
5.14	Relationship between F_y and P_{FEM}/P_u for C4	110
5.15	Relationship between axial force and bending moment for	111
	$F_y = 240 \text{ MPa}$	
5.16	Relationship between axial force and bending moment for	111
	$F_y = 280 \text{ MPa}$	
5.17	Relationship between axial force and bending moment for	112
	$F_y = 345 \text{ MPa}$	
5.18	Relationship between F_{cu} and P_{FEM}/P_u for C1	115
5.19	Relationship between F_{cu} and P_{FEM}/P_u for $C2$	115
5.20	Relationship between F_{cu} and P_{FEM}/P_u for C3	116
5.21	Relationship between F_{cu} and P_{FEM}/P_u for C4	116
5.22	Rrelationship between axial force and bending moment for	117
	$F_{cu} = 20 \text{ MPa}$	
5.23	The relationship between axial force and bending moment	117
5.24	The relationship between axial force and bending moment for $F_{cu} = 30 \text{ MPa}$	118

ABBREVIATIONS

<u>Abbreviation</u> <u>Definition</u>

CFST Concrete-Filled Steel Tube

AISC American Institute of Steel Construction

ECP Egyptian Code of Practice for steel

construction and bridges

EC4 Eurocode 4, design of composite steel

and concrete structures

ASD Allowable Strength Design

LRFD Load and Resistance Factor Design

FEM Finite Element Model

RHS Rectangular Hollow Sections

SHS Square Hollow Sections