Effect Of Two Milling CAD CAM Machines On The Marginal Accuracy Of Two All Ceramic Crown Materials

A thesis submitted to the fixed prosthodontics department, Faculty of Dentistry, Ain Shams University, for the partial fulfillment of the Master Degree requirements in fixed prosthodontics

$\mathbf{B}\mathbf{y}$

Basma Refaat Mohamed Fayyad

B.D.S

Faculty of Dentistry, Ain Shams University, 2011

Supervisors

Dr. Tarek Salah Eldin Morsi

Professor and Chairman of Fixed Prosthodontics

Department

Faculty of Oral and Dental Medicine

Ain Shams University

Dr. Maged Zohdy

Assistant Professor of Fixed Prosthodontics

Department

Faculty of Oral and Dental Medicine

Ain Shams University

Acknowledgements

This work would not have been possible without the support of some very dedicated people.

My deepest appreciation to *Dr. Tarek Salah Eldin Morsi*, *Professor and head of Fixed Prosthodontics department* for his continuous help and guidance. I am honored to be one of his students. I will always remain grateful to his.

I would like to express my sincere appreciation for *Dr. Maged Zohdy Assistant Professor of Fixed Prosthodontics* **department** for everything he has done to help and teach me since I started my masters. He is not just my teacher but also my mentor and friend.

Thanks to all my friends, Islam Heiba , Omar Elsergany , Ahmed Hisham.

Dedications

All thanks to Allah for all his blessings,

To my mom and dad, for carving me into what I am today, and pushing me to be the best I can be. I hope I make them proud

To my sister and my brother for always being there for me,

Contents

List of Figures	. II
List of Tables	IV
Introduction	. 1
Statement of the problem	3
Review of literature	.4
Aim of the study	.31
Materials and Methods	.32
Results	.60
Discussion	.68
Summary	.76
Conclusions	.78
References	.79
Arabic Summary	.96

List of Figure

Figure		page
Figure 1	Incoris TZI blocks	33
Figure 2	IPS E.max CAD block	33
Figure 3	A cast mounted on a surveyor	36
Figure 4	Automix medium viscosity polyvinyl siloxanes impression material	37
Figure 5	Impression taking using custom made special tray by using single step technique under steady finger pressure	38
Figure 6	Epoxy die	39
Figure 7	Omnicam	40
Figure 8	The inLab MCXL milling unit	40
Figure 9	The inLab MCX5milling unit	41
Figure 10	In fire HTC speed furnace	41
Figure 11	Optical Impression	42
Figure 12	Editing the preparation margin	43
Figure 13	Determining the insertion axis	44
Figure 14	The proposed crown design	45
Figure 15	Milling preview	46
Figure 16	MCXL milling instruments for incoris TZi blocks A- Finisher 25 RZ B- Shaper 25RZ	47
Figure 17	crown milling	47
Figure 18	MCXL milling instruments for IPS E.max CAD blocks A- Step bur 12s B- cylinder bur 12s	48

Figure 19	MCX5 milling instruments for inCoris TZI blocks A - Bur 0.5 ZrO2 B - Bur 1.0 ZrO2 C - Bur 2.5 ZrO2	49
Figure 20	MCX5 milling instruments for IPS.Emax blocks A - Diamond bur 1.4 B - Diamond bur 1.2 C - Diamond bur 2.2	49
Figure 21	Grinding instruments for finishing pre-crystalized lithium disilicate crowns A: margin finishing, B: attachment smoothening, C: surface finishing	51
Figure 22	IPS E.max CAD Crystall/Glaze paste	52
Figure 23	IPS E.max CAD Crystall/Glaze	52
Figure 24	Sand blasting for inner surface of zirconia crown	53
Figure 25	Etching with hydrofluoric acid gel.	54
Figure 26	Silanization by silane coupling agent	55
Figure 27	Digital microscope mounted on a precision stand	56
Figure 28	Marginal fit under microscope before cementation	57
Figure 29	Cementation by resin cement	58
Figure 30	Cementation using a specially designed loading device	59
Figure 31	Marginal fit under microscope after cementation	59
Figure 32	Bar chart of mean and SD of marginal adaptation among 4 groups at different sites before cementation	62
Figure 33	Bar chart of mean and SD of marginal adaptation among 4 groups at different sites after cementation	64
Figure 34	Line diagram represent marginal gap before and after in each group on all average	66

List of tables

TABLE		page
TABLE 1	Materials used in the study	32
TABLE 2	Experimental Factorial Design	35
TABLE 3	Mean, Standard deviation and one way ANOVA comparing 4 groups at different sites before cementation.	61
TABLE 4	pairwise comparisons between different groups at each site before cementation	61
TABLE 5	Mean, Standard deviation and one way ANOVA comparing 4 groups at different sites after cementation	63
TABLE 6	pairwise comparisons between different groups at each site after cementation	63
TABLE 7	Mean Standard Deviation and paired t test comparing marginal gap in each group on all average	65
TABLE 8	Percent change	67

Introduction

Current trends in dentistry have seen higher demands for metal free restoration materials. All ceramic restorations have the advantages of improved esthetics, biocompatibility and resistance to compressive forces during mastication. Their durability is comparable to metal ceramic crowns.

Essential requirements for successful all-ceramic crown restorations are such things as good esthetics, high fracture resistance and perfect marginal fit. Dissolution of the luting agent and microleakage are associated with increased marginal crown discrepancies. Subsequent microleakage can lead to irritation and inflammation of a vital pulp leading to endodontic problems. Poor marginal adaptation can lead to secondary caries and affect the health of the periodontium by contributing to increased plaque retention and changes in the subgingival microflora.

Accuracy is crucial in dental practice, particularly regarding the fit of restorations, even if production involves using computer-aided design (CAD) and computer-aided manufacturing (CAM). To improve the outcome of CAD/CAM-manufactured restorations, all steps in production must be coherent and provide the necessary accuracy.

Current CAD/CAM systems comprise three components: scanning, design and manufacturing. In terms of scanning, several studies have shown that, focusing on single preparations or fixed partial denture preparations, digital impressions yield a high accuracy. The outputs of the scanning process are point-clouds and triangle meshes, which are used in the second step, the design. There are many options available for adapting the design of the restoration. The morphologies that can be generated by using the