

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

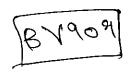
جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن


تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

"IMPROVING THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SOME HIGHLY ALLOYED CAST TOOL STEELS "

1,

Ph. D.Thesis

Submitted to

Mechanical Engineering Department

AIN SHAMS UNIVERSITY

BY

Mohamed Ahmed Abbas

(B. Sc. & M. Sc. Mech. Eng.)

FOR

The Degree of Ph. D. in Mechanical Engineering

Supervised By

Prof. Dr. Ahmed S. El-Sabbagh

Prof. Dr. Tarek El-Gammal

Prof. Dr. Adel A. Nofal

Prof. Dr. Saied A. El-Ghazaly

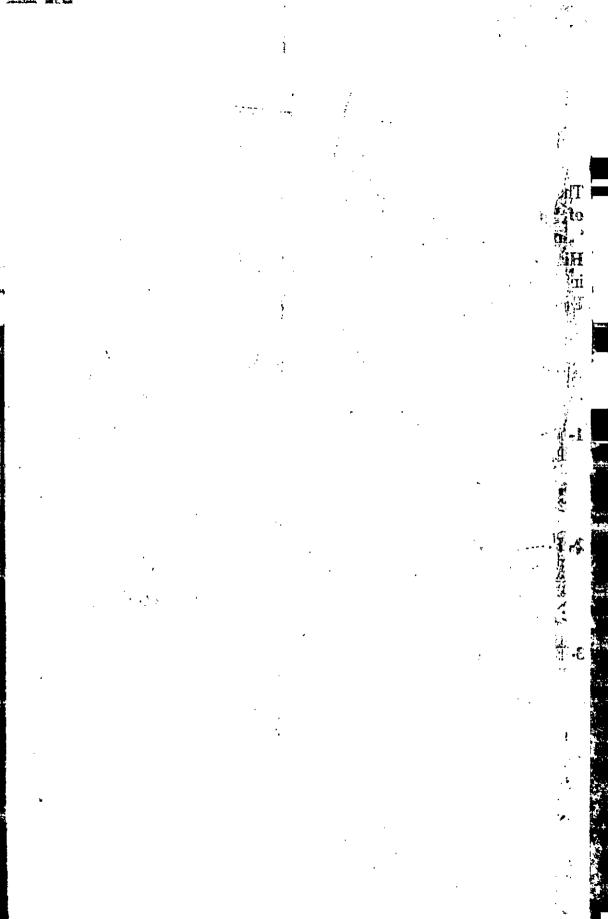
بسم الله الرحمن الرحيم

وانزلنا الحديد فيه بأس شديد ومنافع للناس

صدق الله العظيم

STATEMENT

This dissertation is submitted to Ain-Shams University for Ph. D. in Mechanical Engineering.


The work included in this thesis was carried out by the author in the department of Mechanical Engineering, Ain-Shams University, from December 1994 to October 1998.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institute.

Date : / /1998

Signature: Mohamed

Name Mohamed Ahmed Abbas

Examiners Committee

re undersigned certify that they have read and recommend to the Faculty Engineering, Ain-Shams University for acceptance a thesis entitled "Faproving the Microstructure and Mechanical Properties of Some ghly Alloyed Cast Tool Steels" submitted by Mohamed Ahmed Abbas, partial fulfillment of the requirement for the Ph. D. in Mechanical Engineering.

Name

Prof. Dr. Ahmed El-Shaikh

Professor of Metallurgical Engineering Faculty of Engineering, Cairo University

Prof. Dr. Mohamed A. Zamzam

Professor of Production Engineering
Faculty of Engineering, Ain-Shams University

- Prof. Dr. Ahmed S. El-Sabbagh
Professor of Production Engineering
Faculty of Engineering, Ain-Shams University

Signature

Zam Jan

alment De Sal

CONTENTS

SUBJECT	Page
<u>IST OF TABLES</u>	
<u>IST OF FIGURES</u>	
ACKNOWLEDGMENT	
-\BSTRACT	
CHAPTER (ONE)	1
INTRODUCTION	1-2
CHAPTER (TWO)	3
LITERATURE SURVEY	3
1.1. Influence of Alloying Elements on Solidification of Highly	3
Alloyed Tool Steels	
2.1.1. Liquidus Surface & Fe-M-C Metastable System	3-5
2.1.2. Effect of Alloy Additions on Solidification	5 - 15
Reactions	
2.2. Influence of Alloying Elements on Microstructure of Tool	
Steels (Multicomponent Alloys).	15
2.2.1. General	15~19
2.2.2. Morphology and type of Carbides	19-25
.3. Manufacturing Technologies of Alloyed Tool Steel	25
2.3.1. Melting & Casting	25-28
2.3.2. Forming & Fabrication	28 - 30

CONTENTS (cont.)

SUBJECT	Page
CHAPTER (THREE)	31
EXPERIMENTAL PROCEDURES	31
3.1. Investigated Materials	31
3.2. Melting & Refining	31-34
3.3. Casting & Cooling Procedure	34 - 38
3.4. Homogenising Annealing & Machining	38
3.5. Heat Treatment Cycles	38-43
3.6. Microstructure Investigation	43
3.7. Fractographical Investigation	·i44
3.8. Impact Toughness	44
3.9. Hot-Hardness Testing	44-47

CONTENTS (cont.)

SUBJECT	Page
CHAPTER (FOUR)	48
RESULTS AND DISCUSSIONS	48
4.1. Analysis of Microstructure and Carbide Morphology	48
4.1.1 Matrix in As-Cast Conditions	48-53
4.1.2. Controlling Morphology of Carbides by	53
Prespherodization (A) TS-1 and TS-2 Steels (B) TS-3 and TS-4 Steels	53 - 63 63
4.1.3. Prespherodized, Hardened & Tempered Matrices of Steels	63
(A) TS-1 and TS-2 (B) Steels TS-3 and TS-4 (C) Severe Secondary Cooling	63 - 70 70 70 - 76
4.1.4. Comparison Between Traditional Hardening & Prespherodized-Hardening	76
4.2. Assesment of Mechanical Properties	79
4.2.1. Toughness & Fractography (A) High Speed Steel (TS-1, TS-2) (B) Cold-work Tool Steel	79 79 - 85 89 - 93
4.2.2. Hot Hardness At Elevated Temperatures	93 - 101
CHAPTER (FIVE)	102
CONCLUSIONS	-102 - 103
REFERENCES	

List of Tables

Table	Subject	Page
1	Reactions occuring in Fe-Cr-C ternary sestem	6
2	Phase compositions on invariant reaction surfaces.	7
3	Distribution of chromium between austenite ferrite and	12
	carbides phases	
4	Carbon rquired for stoichiometric balance with various	16
	elements.	•
5	Chemical composition of solidified steel ingots.	32
6	Casting conditions of V-shape ingots(water cooled	37
	copper moulds).	
7	Conditions of secodary cooling procedure for Y-shape	39
	ingots and round samples of steels(TS-1) to (TS-4).	:
8.	Heat treatment map used in tool steels under investigation.	42