

Various Characteristics of Some Bifunctional Supported Complex Catalysts Used in Reactions of Applied Interest

A Thesis Submitted
By
Atef Samir Darwish

B.Sc. and M.Sc.

For the Award of Ph.D. degree in Chemistry
Under supervision of

Prof. Salah A. Hassan

Professor of Physical Chemistry, Faculty of Science, Ain-Shams University.

Dr. Hamdi A. Hassan

Associate Prof. of Physical Chemistry, Faculty of Science, Ain-Shams University.

Prof. Fatma Z.M. Yahia

Professor of Petrochemicals, Egyptian Petroleum Research Institute.

Dr. Salwa A. Sadek

lecturer of Physical Chemistry Faculty of Science, Ain-Shams University.

Chemistry Department, Faculty of Science, Ain-Shams University

2010

بسم الله الرحمن الرحيم

قَالُواْ سُبْحَانَكَ لَا عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أنتَ الْعَلِيمُ الْحَكِيمُ

صدق الله العظيم

سورة البقرة

Various Characteristics of Some Bifunctional Supported Complex Catalysts Used in Reactions of Applied Interest

Thesis submitted to: Faculty of Science, Ain-Shams University

For the award of: Ph.D. degree in Chemistry

Atef Samir Darwish

Thesis Supervisors: Approved

Prof. Salah A. Hassan

Professor of Physical Chemistry, Faculty of Science, Ain-Shams University.

Prof. Fatma Z.M. Yahia

Professor of Petrochemicals, Egyptian Petroleum Research Institute.

Dr. Hamdi A. Hassan

Associate Prof. of Physical Chemistry, Faculty of Science, Ain-Shams University.

Dr. Salwa A. Sadek

Lecturer of Physical Chemistry Faculty of Science, Ain-Shams University.

Head of Chemistry Department

Prof. Dr. M. F. El-Bassiony

Ain-Shams University Faculty of Science Chemistry Department

Qualification

Student name: Atef Samir Darwish

Scientific Degree: Ph.D.

Name of Faculty: Faculty of Science

University: Ain-Shams University

Bachelor Degree: 1999

Master degree: 2005

Head of Chemistry Department Faculty of Science Ain-Shams University

Prof. Dr. M. F. El-Bassiony

Acknowledgement

First and foremost, thanks are due to Allah, the beneficent and merciful for giving me the capability to finish this work.

I wish to express my deepest gratitude to *Prof. Dr. Salah A. Hassan,* professor of physical chemistry, Faculty of Science, Ain-Shams University, for suggesting the subject of the thesis, for his active supervision of the work, utmost patience, fruitful advises and discussions and sincere encouragement.

I am also indebted to *Dr. Hamdi A. Hassan*, assistant professor of physical chemistry *and Dr. Salwa A. Sadek*, lecturer of physical chemistry, Faculty of Science, Ain-Shams University, for their supervision, valuable assistance and encouragement.

I thank also *Prof. Dr. Fatma Z. M. Yahia,* professor of petrochemicals, Department of petrochemical technology, Egyptian Petroleum Research Institute, for her valuable help, support and providing many of the required facilities.

To my mother, wife and my dearest brother

Abstract

Name: Atef Samir Darwish

Thesis title: Various Characteristics of Some Bifunctional Supported Complex Catalysts Used in Reactions of Applied Interest.

In the present study, the pure raw bentonite clay has been modified by acid treatment and by pillaring with titania and vanadia. Iron (II) phthalocyanine complex was immobilized in different wt% loadings onto the various modified bentonite supports.

Structural characteristics of the various samples were investigated through XRD, FTIR, TGA, and ICP-EDX techniques. Textural and morphological characteristics were estimated from low-temperature adsorption-desorption isotherms of N_2 , pore size distribution analysis and SEM. Dispersion parameters of iron (II) phthalocyanine were determined from H_2 chemisorption isotherms. Acid-base properties were followed up via potentiometric titration method and cation exchange capacity in each case was also determined.

Bifunctional catalytic activities of the prepared catalyst samples were examined in oxidative dehydrogenation of ethylbenzene to produce styrene monomer as well as in *in-situ* bulk polymerization of methyl methacrylate. The catalytic results were correlated with various characteristics to determine the most active and selective samples for application.

A new approach was achieved for using the bulk polymerization of MMA in presence of FePc complex immobilized onto modified bentonite clay samples for synthesis of a PMMA/clay hybrid composite, with dispersed clay in minute sizes. Characterization of the produced hybrid composites was performed by XRD, FTIR, NMR and SEM techniques.

Keywords:

Modified bentonite; ATTB; V-PILB; Ti-PILB; Immobilized FePc; ODH of EB; Bulk polymerization of MMA.

Abbreviations

Raw bentonite Clay	RB
Acid/thermally treated bentonite	ATTB
Vanadia- pillared bentonite	V-PILB
Titania- pillared bentonite	Ti-PILB
Iron phthalocyanine	FePc
X-ray diffraction	XRD
Fourier Transform infrared	FTIR
Scanning electron microscope	SEM
Specific Surface area	S_{BET}
Ion coupled plasma	ICP
Energy dispersive X-ray spectroscopy	EDX
BET-C energetic constant	C_{BET}
Monolayer coverage	V_{m}
Pore size distribution	PSD
Metallic specific surface area	S_{FePc}
Apparent degree of dispersion	$[D]_{app}$
Degree of surface coverage	α
Cation exchange site density	D_{CE}
Silanol site density	$\mathrm{D}_{\mathrm{SiO}}^{-}$
Aluminol site density	D_{AlOH}
Methyl methacrylate	MMA
Poly methyl methacrylate	PMMA

Average weight molecular weight	\overline{M}_{w}
Average number molecular weight	$\overline{\boldsymbol{M}}_n$
Oxidative dehydrogenation	ODH
Ethyl benzene	EB

Contents

I. Introduction

I.1. Porphyrins and Phthalocyanines	1
I.1.1. General concepts of Porphyrin and Phthalocyanine Complexes	1
I.1.2. Importance of metallophthalocyanines in our life	5
I.1.3. Chemistry of iron phthalocyanine	7
I.1.4. Catalytic properties of unsupported and supported porphyrin and phthalocyanine complexes	
I.1.4.1. Unsupported complexes	.11
I.1.4.2. Supported complexes	.14
I.1.5. Previous studies on physicochemical properties of unsupported a supported iron phthalocyanine	
I.1.5.1 Ultraviolet and visible spectroscopic studies	20
I.1.5.2. Fourier transform infrared spectroscopy (FTIR) studies	.21
I.1.5.3. Electron spin resonance (ESR) studies	.22
I.1.5.4. X-ray diffraction (XRD) studies	22
I.1.5.5. Thermal studies	.23
I.1.5.6. Electron microscope studies	.23
I.2. Clay minerals	24
I.2.1. Introduction to clay chemistry	24
I.2.1.1 Smectites	.24
I.2.1.2. Sepiolite	.29
I.2.1.3. Kaolinite	29
I.3. Advantages and limitations of clays and their improvements	31
I.3.1. Acid activation of clay (Acid – leached clay)	.31

I.3.2. Thermal activation of clay	36
I.3.3. Surfactant treatment of clay-organoclays	37
I.3.4. Intercalation and pillaring of clays	38
I.3.5. Ti-pillared interlayered clays (Ti-PILC)	50
I.3.6. Vanadium doped bentonite clay	53
I.3.7. Implantation of organometallic complexes in the intragallery	
spacing of clay	55
I.4. Highlights on some industrial applications of clays and acid-treated and pillared clays	61
I.4.1. Removal of pollutants	61
I.4.2. Alkylation reactions	63
I.4.3. Acylation reactions	65
I.4.4. Isomerization reactions	65
I.4.5. Oxidation and etherification reactions	66
I.4.6. Hydrogenation and dehydrogenation reactions	69
I.4.7. Nitration of chlorobenzene	69
I.4.8. Dimerization and oligomerization reactions	70
I.4.9. Condensation reactions	71
I.4.10. Separation through reactions	71
I.4.11. Hydration of styrene	72
I.5. A review of several techniques used for characterization of ra and modified clays	
I.5.1. X-ray diffraction spectroscopy	72
I.5.2. FTIR spectroscopy	
L5.3. Energy dispersive X-ray analysis (EDX)	

I.5.4. Cation Exchange Capacity (CEC)	77
I.5.5. Gas phase pyridine adsorption by the aid of FTIR	78
I.5.6. Potentiometric titration	78
I.5.7. Differential thermal analysis (DTA)	79
I.5.8. Thermogravemetric analysis (TGA)	79
I.5.9. Scanning electro microscope (SEM)	80
I.5.10. Nitrogen adsorption and desorption isotherms	80
I.6. Aim of work	82
II- Experimental Details	
II.1. Method of Preparation of solid catalysts and supports	86
II.1.1. Fe (II) Pc	86
II.1.2. Modified bentonite samples	87
II.1.3. Immobilization of Fe(II)Pc onto various bentonite supports	88
II.2. Structural characterization techniques for various solid catalysts	89
II.2.1. Thermogravimetric analysis (TGA)	89
II.2.2. X-ray diffraction analysis (XRD)	89
II.2.3. Fourier transform infrared analysis (FTIR)	90
II.2.4. Ion Coupled Plasma (ICP)	90
II.2.5. Energy Dispersive X-ray Spectroscopy (EDXS)	90
II.2.6. UV-vis spectra	90
II.2.7. Scanning Electron Microscope	90
II.3. Surface properties of the prepared catalyst samples	91
II.3.1. Texture of the investigated catalyst systems via low temperadsorption of Nitrogen (apparatus and technique)	

II.3.2. Dispersion Characteristics of the prepared catalyst samples92
II.3.2.1 Purification of hydrogen gas
II.3.2.2. Chemisorption of hydrogen (H ₂ uptake)93
II.4. Acid – Base measurements
II.5. Cation exchange capacity (CEC)95
II.6. Reactivity of the prepared solid catalysts96
II.6.1. Bulk polymerization of Methyl methacrylate (MMA)96
II.6.1.1. Reagents96
II.6.1.2. Bulk Polymerization procedure
II.6.1.3. Characterization of poly methyl methacrylate (PMMA)98
II.6.2. Oxidative dehydrogenation of ethylbenzene to styrene99
III- Results and discussion
III.1. Structural characteristics of modified bentonite supports and various bentonite-immobilized FePc catalysts
III.1.1. XRD analysis
III.1.1.1 X-ray study of the original and modified (ATTB, Ti-PILB and V-PILB) bentonite clay samples
III.1.1.2. X-ray study of the various modified bentonite-immobilizeded
FePc samples
III.1.2. FTIR analysis
III.1.2.1. FTIR analysis of various modified bentonite supports (ATTB V-PILB
III.1.2.2. FTIR study of the various modified bentonite-immobilized FePc samples

III.1.3. Thermal behaviours of parent modified bentonite supports and various immobilized FePc catalyst
III.1.3.1. Thermal behaviours of modified clay supports (ATTB, V-
PILB and Ti-PILB)119
III.1.3.2. Thermal behaviours of modified bentonite – supported FePc
Samples121
III.1.4. Elemental analysis of various solid materials under study123
III.2. Surface properties of the investigated catalyst systems
III.2.1. Texture of the investigated catalyst systems
III.2.1.1. Texture of different modified bentonite samples126
III.2.1.2. Texture of FePc immobilized on modified bentonite catalyst samples
III.2.2. Surface dispersion and orientation characteristics of the immobilized FePc complex in the investigated catalyst systems
III.2.2.1. General
III.2.2.2. Hydrogen chemisorption isotherms on various investigated
Samples144
III.2.2.3. Dispersion parameters and orientation characteristics of
immobilized FePc complex
III.3. Acid – base characteristics and cation exchange capacities (CEC) of modified bentonite supports and various bentonite-immobilized FePc catalysts
III.3.1. General Remarks
III.3.2. Modeling of surface charges (surface complexation model)156

III.3.3. Surface acid – Base properties
III.3.4. Measurements surface charges
III.4. Catalytic activity of various modified bentonite immobilized FePc catalyst systems under investigation in oxidative dehydrogenation (ODH) of ethylbenzene (EB)
III.4.1. General Remarks
III.4.2. Catalytic activity measurements
III.4.3. Optimization of the reaction conditions
III.4.3.1. Effect of catalyst weight and reaction temperature on the catalytic parameters in EB-ODH
III.4.4. Activation parameters of EB – oxidative dehydrogenation over FePc (0.5 wt%) immobilized onto various modified bentonite supports177
III.4.5. Catalytic performance of FePc of different loadings immobilized onto modified bentonite supports in EB-ODH
III. 4.6. Proposed mechanisms of EB – oxidative dehydrogenation in view of different approaches
III. 4.7. Synergism, Combined effects in the ODH of EB on FePc/modified bentonite supports
III.5. Catalytic activity of various modified bentonite-immobilized FePc catalyst systems under investigation in bulk polymerization reaction of methyl methacrylate.
III.5.1. Introductory remarks
III.5.2. Kinetic study of bulk polymerization of MMA over the catalyst samples under investigation
III.5.3. Competing roles of FePc, pillars and acid sites in bulk polymerization of MMA