Relation between Serum Zinc Level and Spontaneous Bacterial Peritonitis in Patients with Liver Cirrhosis and Ascites

Thesis

Submitted for fulfillment of Master degree in Internal Medicine

By

Michel Aziz Zaki Hanna

(High Degree Diploma, in Internal Medicine) Faculty of Medicine, Ain Shams University 2013

Under Supervision of

Prof.Dr. Mahmoud Abdel Meguid Osman

Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed El Ghandour

Lecturer of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Heba Hasan Ali

Lecturer of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

Acknowledgments

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful. I can do nothing without Him.

I would like to express my sincere gratitude to **Prof.Dr. Mahmoud Abdel Meguid Osman,** Professor of Internal Medicine and Gastroenterology, Faculty of Medicine, Ain Shams University, for his encouragement, support and kindness which enable me to produce good valuable work. I really have the honor to complete this work under his supervision.

A special thanks and appreciation to **Dr. Ahmed Mohamed El Ghandour,** Lecturer of Internal Medicine and
Gastroenterology, Faculty of Medicine, Ain Shams
University, for his active guidance and keen supervision
which were of great help throughout this work.

A special thanks and tribute **Dr. Heba Hasan Ali,** Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for the efforts and time she has devoted to accomplish this work.

I am sincerely grateful to my Family, specially my Parents and Wife for their support and encouragement.

Michel Aziz Zaki Hanna

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	4
Review of Literature	
Liver Cirrhosis	5
Spontaneous Bacterial Peritonitis	34
Low Serum Zinc Level and Spontaneous Bacteri Peritonitis	
Patients and Methods	81
Results	91
Discussion	137
Summary	155
Recommendations	157
References	158
Arabic Summary	<u> —</u>

List of Abbreviations

Abbr. Full-term

AASLD : American Association for the Study of Liver Diseases

ACLF : Acute-on-chronic liver failure

AFI : Ascitic fluid infection
AKI : Acute kidney injury
ALD : Alcoholic Liver Disease
AMA : Anti mitochondrial abs

ANA : Anti nuclear abs
BMD : bone mineral density
BSI : Bloodstream infections
BT : Bacterial Translocation
CAD : Coronary Artery Diseases

CAID : Cirrhosis associated immune dysfunction

CHB : Chronic hepatitis BCHC : Chronic hepatitis CCLD : Chronic liver disease

CNNA : Culture-negative neutrocytic ascites

CO : Cardiac output

Cu : Cupper

DAMP : Damage associated molecular patternDCPs : Decompensated cirrhotic patients

EASL: European Association for the Study of the Liver

ECHOABNs: Echocardiographic abnormalities

EH : Emotional health

ESLD : End-stage liver disease

FN: Femur neck FQ: Fluoroquinolone

GAS : Group A -hemolytic Streptococci

GI : Gastrointestinal

H2RAs : H2-receptor antagonists

List of Abbreviations

HBsAg : Hepatitis B surface antigen

HBV : Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV : Hepatitis C virus

HE : Hepatic encephalopathyHPS : Hepatopulmonary syndromeHRQoL : Health-related quality of life

HRS : Hepatorenal syndrome

hs-CRP: High Sensitive C-Reactive Protein

IBD : Inflammatory bowel diseaseICH : Intracranial hemorrhage

IFN-gamma: Interferone gamma

IL : Interleukine

ILD : Inflammatory lung disease

LC : Liver cirrhosis

LPS : Lipopolysaccharide

LS : Lumber spine

LT : Liver transplantation

MCP-1 : Monocyte chemotactic protein-1

MDR : Multi drug resistant

MELD : Model For End-Stage Liver Disease

Mg : Magnesium

MNB : Monomicrobial non-neutrocytic bacterascitesMRSA : Methicillin-resistant Staphylococcus aureus

NAFLD : Non alcoholic fatty liver diseaseNASH : Non alcoholic steatohepatitis

NK : Natural killer NO : Nitric oxide NOS : NO synthase

PAMP : Pathogen associated molecular pattern

PBC: Primary biliary cirrhosis

PBCSS: Primary biliary cirrhosis- Sjogren syndrome

PHG : Portal hypertensive gastropathy

PHT : Portal hypertension

List of Abbreviations

PI : Pulsatility index

PMNC : Polymorphonuclear cell

PPHTN: Portopulmonary hypertension

PPIs : Proton pump inhibitors
PROs : Patient-reported outcomes
PVT : Portal vein thrombosis

RF : Renal failure **RI** : Resistive index

SBP : Spontaneous bacterial peritonitis

Se : Selenium

SIBO : Small intestinal bacterial overgrowth

SIRS : Systemic inflammatory response syndrome

SOFA : Scores Sepsis-related organ failure assessment score

SS : Sjogren syndrome

SVR : Systemic vascular resistance

Th1: T helper 1

TNF-α : Tumour necrotic factor αUGI : Upper gastro intestinalUTI : Urinary tract infection

VRE : Vancomycin resistant enterococciVSE : Vancomycin susceptible enterococci

WBC : White blood countWP : Work productivity

Zn D : Zn deficiency

Zn : Zinc

List of Tables

Table No.	Title	Page No.
Table (1):	Common aetiologies disease	of chronic liver
Table (2):	Child-pugh classification method of severity of li	-
Table (3):	Variants of spont peritonitis	aneous bacterial43
Table (4):	Number of patients Hepatitis c (HCV) in bo	suffering from oth groups92
Table (5):	Comparison between regards age	two groups as93
Table (6):	Comparison between regards sex	two groups as94
Table (7):	Comparison between regards Culture Results	two groups as of Ascitic fluid: 95
Table (8):	Comparison between regards ultrasonograp Liver, Kidney, Spleen a	C 1
Table (9):	Comparison between regards co-morbidities.	two groups as101
Table (10):	Comparison between according to diff investigations	0 1
Table (11):	Correlation between se different laboratory inv groups.	

\bigcap	List	0.0	Ta.	1.1	_
لطط	List	OC.	'Aa	194.	es

Table (12):	Relation between ZINC and different co morbidities in group I	130
Table (13):	Relation between ZINC and different co morbidities in group II	132
Table (14):	Accuracy of ZINC between group I and group II.	135

List of Figures

Figure N	o. Title Pa	ge No.
Figure (1):	Sequelae and Complications of Cirrhosi	s 14
Figure (2):	Computed tomographic imaged demonstrating ascites with abnormation peritoneal enhancement without evidence of intestinal perforation	al ıt
Figure (3):	Macrophages from Patients wit Cirrhotic Ascites Showed Functio Alteration of Host Defense Receptor	n
Figure (4):	Pathogenesis of ascites in the setting of cirrhosis	
Figure (5):	Algorithm for the approach to the differential diagnosis of ascites	
Figure (6):	Cirrhosis associated immun dysfunction	
Figure (7):	Vicious circle between poor die gastrointestinal infections, and zin deficiency	c
Figure (8):	Number of patients suffering from Hepatitis c (HCV) in both groups	
Figure (9):	Comparison between the two groups a regards age	
Figure (10):	Comparison between two groups a regards Gender distribution.	
Figure (11):	Comparison between two groups a regards Ascitic Fluid Culture	
Figure (12):	Comparison between two groups a regards liver ultrasonography	

Figure (13):	Comparison between two groups as regards Nephropathy
Figure (14):	Comparison between two groups as regards "spleen size"
Figure (15):	Comparison between two groups as regards ascites
Figure (16):	Comparison between two groups as regards co-morbidities
Figure (17):	Comparison between two groups as regards Serum albumin (mg/dl) in the both groups
Figure (18):	Comparison between two groups as regards Alkaline phosphatase (U/L) both groups
Figure (19):	Comparison between two groups as Total billirubin (mg /100ml) & Direct billirubin (mg /100ml) in both groups 10'
Figure (20):	Comparison between two groups as regard AST (U/L) &ALT (U/L) in both groups
Figure (21):	Comparison between two groups as regards Fasting blood sugar (mg/100ml) in both groups
Figure (22):	Comparison between two groups as regards Hemoglobin (g/100ml) in both groups:
Figure (23):	Comparison between two groups as regards TLC/m3 in both groups
Figure (24):	Comparison between two groups as regards platelets count in both groups 112

Figure (25):	Comparison between two groups as BUN and Creatinine (mg/100 ml) in both groups.	113
Figure (26):	Comparison between two groups as regard coagulation profile PT (Sec.), PTT (Sec.) and INR in both groups:	114
Figure (27):	Comparison between two groups as regard Alfa Feto Protein (AFP) (ng / ml) in both groups:	115
Figure (28):	Comparison between two groups as regard Serum Zinc level in both groups	116
Figure (29):	Comparison between two groups as regard Serum Sodium level in both groups.	117
Figure (30):	Comparison between two groups as regard CRP in both groups.	118
Figure (31):	Comparison between two groups as regard Ascitic neutrophil count in both groups	119
Figure (32):	Comparison between two groups as regard Ascitic fluid Protein (g/L) in both groups:	120
Figure (33): (Correlation between s.albumin and zinc in group 2	122
Figure (34):	Correlation between total bilirubin and zinc in group 2	122
Figure (35):	Correlation between AST and zinc in group 2	123
Figure (36):	Correlation between ALT and zinc in group 2	123

Figure (37):	Correlation between fasting blood sugar and zinc in group 2	. 124
Figure (38):	Correlation between hemoglobin and zinc in group 2	. 124
Figure (39):	Correlation between platelets and zinc in group 2	. 125
Figure (40):	Correlation between BUN and zinc in group 2	. 125
Figure (41): (Correlation between creatinine and zinc in group 2	. 126
Figure (42): (Correlation between PT and Zinc in group 2	. 126
Figure (43):	Correlation between INR and Zinc in group 2	. 127
Figure (44):	Correlation between Na and Zinc in group 2	. 127
Figure (45):	Correlation between CRP and Zinc in group 2	. 128
Figure (46):	Correlation between Ascitic neutrophil count and Zinc in group 2	. 128
Figure (47):	Correlation between Ascitic fluid protein and Zinc in group 2	. 129
Figure (48):	Correlation between CKD and Zinc in group 1	. 131
Figure (49):	Relation between ZINC and comorbidities in group2	. 134
Figure (50):	Accuracy (area under ROC curve) of ZINC between group I and group II. 135	
Figure (51):		136

Abstract

Background: Among members of patients suffering from liver cirrhosis and ascites with spontaneous bacterial peritonitis, serum zinc level have attracted much attention as being markedly decreased in such patients. **Results:** The present study revealed that 95% of patients including both groups are suffering Hepatitis C infection. The study also showed that there is marked decrease in serum zinc level in group 2 suffering liver cirrhosis and ascites with spontaneous bacterial peritonitis. Aim of the Work: To study association between serum zinc level and spontaneous bacterial peritonitis in patients with liver cirrhosis and ascites. Patients and Methods: This descriptive analytic study will include all available data about patients selected from gastroenterology department - El Demerdash hospital. The study was conducted on 50 patients; all have liver cirrhosis and ascites and were divided as follows: Group 1: 25 patients without spontaneous bacterial peritonitis and Group 2: 25 patients diagnosed with spontaneous bacterial peritonitis. Conclusion: Zn deficiency was noticed in many studies to be decreased in subjects with many liver diseases specially those with hepatitis C-related liver disease when compared with other etiologies of cirrhosis. Recommendations: Future studies have to be concerned for the role of zinc in patients with cirrhosis and ascites for being an important factor modulating immune system and preventing occurance of spontaneous bacterial peritonitis.

Key words: serum zinc, spontaneous bacterial peritonitis, liver cirrhosis, ascites

Introduction

Cirrhosis results from different mechanisms of liver injury that lead to necroinflammation and fibrogenesis; histologically it is characterised by diffuse nodular regeneration surrounded by dens fibrotic septa with subsequent parenchymal extinction and collapse of liver structures (*Tsochatzis et al.*, 2014).

Regardless of aetiology, most of the morbidity and mortality from CLD (chronic liver diseases) occurs among individuals with cirrhosis, who are at risk of developing complications including ascites, hepatic encephalopathy, variceal haemorrhage and liver cancer (*Valery et al.*, 2014).

The most common complication to chronic liver failure is ascites. The formation of ascites in the cirrhotic patient is caused by a complex chain of pathophysiological events involving portal hypertension and progressive vascular dysfunction. Since ascites formation represents a hallmark in the natural history of chronic liver failure it predicts a poor outcome with a 50% mortality rate within 3 years. Patients with ascites are at high risk of developing complications such as spontaneous bacterial peritonitis, hyponatremia and progressive renal impairment (*Pedersen et al.*, 2015).

Spontaneous bacterial peritonitis (SBP) is defined as an infection of initially sterile ascitic fluid (AF) without a detectable, surgically treatable source of infection. It is a frequent and severe complication of cirrhotic ascites (*Lata et al.*, 2009).

Spontaneous bacterial peritonitis (SBP) is a very common bacterial infection in patients with cirrhosis and ascites requiring prompt recognition and treatment. All patients with cirrhosis and ascites are at risk of SBP and the prevalence of SBP in outpatients is 1.5-3.5% and about 10%-30% in hospitalized patients. Half of the episodes of SBP are present at the time of hospital admission while the rest are acquired during hospitalization (*Oladimeji et al., 2013*).

Spontaneous bacterial peritonitis (SBP) in patients with cirrhosis is typically caused by gram-negative bacteria. However, the number of SBP cases due to gram-positive bacteria is steadily increasing. To date, little is known about the predictive factors involved in SBP infections (*Kim et al., 2016*).

Zinc affects the monocytes/macrophages in several ways. Zinc is required for the development of monocytes/macrophages and regulates their functions such as phagocytosis and proinflammatory cytokine production. Zinc deficiency has been reported in patients with liver disease; chronic alcoholism, malabsorption syndrome, chronic renal