

Faculty of Engineering
Electronics & Communications Engineering Department

Evaluation of landline local loops in Egypt

By

Islam Amin Mohamed Ibrahim Ellabban

(B.Sc. Electronics and Communications-2004)

A Thesis Submitted for Fulfillment of the Requirements for the Degree of Master of Science in Electronics & Communications Engineering

Supervised by

Prof. Dr. Abdelhalim Zekry

Prof. of Electronics

Electronics & Communications Engineering Dept.

Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. Mohamed Abouelatta

Electronics & Communications Engineering Dept.
Faculty of Engineering, Ain Shams University, Cairo, Egypt

Cairo, Egypt, 2015

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO-EGYPT

Electronics and Communications Engineering Department

Evaluation of landline Local Loops in Egypt

Examiner Committee

Name: Islam Amin Mohamed Ibrahim Ellabban
Dissertation: Evaluation of Landline Local Loops in Egypt
Degree: Master of Science in Electrical Engineering

	Title, Name, Affiliation	Signature
1.	Prof. Dr. Wagdy Refaat Anis	
	Professor in Electronics and Communications Eng. Dept. Faculty of Engineering - Ain Shams University	(Examiner)
2.	Prof. Dr. Salah Sayed Ibrahim Elagooz	
	Professor in the Electronics and Communications Eng. Dept. Modern Academy	(Examiner)
3.	Prof. Dr. Abd-Elhalim Abd-Elnabi Zekry	
	ofessor in the Electronics and Communications Eng. Dept. culty of Engineering - Ain Shams University	(Supervisor)

Date 13-8-2015

Statement

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Electrical Engineering, Electronics and Communications Engineering.

The work that was included in this dissertation was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this dissertation was submitted for a degree or a qualification at any other university or institution.

Islam Amin Mohamed Ibrahim Ellabban
Electronics and Communications Engineering Department
Faculty of Engineering
Ain Shams University
Cairo, Egypt
2015

Contents

Acknowledgment	1
Abstract	ii
Introduction	1
CHAPTER ONE: Telecom Egypt Copper Network	4
1.1: Introduction to exchanges	6
1.2: Exchange Boundaries	7
1.2.1: Exchange location	8
1.3: The exchange network	8
1.3.1: Main Distribution Frame (MDF)	9
1.3.1.1: The MDF tasks	9
1.3.1.2: MDF termination cables (Tips cables)	9
1.3.1.3: MDF distribution closure	9
1.3.2: The Primary network	10
1.3.2.1: Main routes	10
1.3.2.2: Hole types, locations and sizes	11
1.3.3: Cross Connection Point (CCP) or "Cabinet"	11
1.3.3.1: Cabinet accessories	12
1.3.3.2: Earthing of cabinet	12
1.3.4: Numbering system of the primary network components	12
1.3.5: The secondary network	13
1.3.5.1: Distribution Point	13
1.3.5.1.1: Earthing of distribution points	14
1.3.6: Numbering system of the secondary network components	14
1.3.7: The Direct Feed Area (Rigid) Network	15
1.4: Cable splicing	15
1.4.1: Connectors	16
1.5: Underground cables	16
1.5.1: TC-450 underground cables	16
1.5.2: TC-154 underground cable	17
1.5.3: American cable	18
1.6: Documentation	18
1.6.1: Basics of maps	19
1.6.2: Types of maps and records	19
1.6.2.1: General plan	19
1.6.2.2: Main distribution frame diagram	20
1.6.2.3: Vault room diagram	20
1.6.2.4: Conduit system map	21
1.6.2.5: Main cable diagram	21

1.6.2.6: Secondary cable diagram 21
CHAPTER TWO: Twisted Pair Telephone Line 22
2.1: Transmission line RLCG characterization 24
2.1.1: Reflection coefficients and Return loss 26
2.2: Balance – Metallic and Longitudinal
2.3: Basic twisted pair concepts 27
2.3.1: Capacitance of the twisted pair 27
2.3.2: Induction of the twisted pair 28
2.3.3: Twisting 28
2.3.3.1: Tight twisting
2.3.4: Attenuation 30
2.3.5: Crosstalk 30
2.4: Twisted pair RLCG measurement procedure 30
CHAPTER THREE: Three Voltmeter Vector Impedance Measurement System 32
3.1: Three voltmeter vector impedance measurement 34
3.2: Three-Voltmeter Vector Impedance Measurement System 37
3.2.1: The Measuring setup circuit 38
3.2.1.1: The Differential Amplifier 39
3.2.1.2: The Peak Detectors 40
3.2.1.2.1: Electronic Peak Detector 41
3.2.1.2.2: LabVIEW TM Peak Detector 43
3.2.2: Data Acquisition System (DAS)
3.2.2.1: Personal Computer 45
3.2.2.2: Transducers, Sensors and Signals 45
3.2.2.2.1: Analog signals 45
3.2.2.2: Digital Signal 46
3.2.2.3: Data Acquisition Hardware (DAQ) 46
3.2.2.3.1: Resolution 46
3.2.2.3.2: Sampling Rate 47
3.2.2.3.3: Analog input/output channels 47
3.2.2.4: Application Software 47
CHAPTER FOUR: Telephone Cable Faults 49
4.1: Cable Impairments Identification 51
4.2: Fault determination procedure 52
4.3: Telephone cable faults 53
4.3.1: Short circuit fault 54
4.3.2: Open circuit fault 54
4.3.3: Crosstalk fault 54
4.3.4: Pair split fault 55
4.3.5: Ground fault 56
4.3.6: Reasons of faults 57

4.4: Main faults tests (using "Dynatel 965DSP")	57
4.4.1: Time Domain Reflectometer (TDR) test	57
4.4.2: Insulation resistance test	59
4.4.3: Resistance Fault Location (RFL) test	60
CHAPTER FIVE: Measurement Results And Analysis	62
5.1: Telecom Egypt copper network evaluation	64
5.2: Primary network evaluation of cabinet 3, cable 3, "El-kab" exchange,	<i>C</i> 1
Port Said, Egypt	64
5.2.1: TDR test (using "Dynatel 965DSP")	64
5.2.2: Insulation resistance test (using "MEGGER BWW80")	64
5.2.3: Capacitance measurement (using "Dynatel 965DSP")	64
5.2.4: DC voltage measurement (using "Dynatel 965DSP")	65
5.2.5: AC voltage measurement (using "Dynatel 965DSP")	65
5.2.6 Occupied lines test (using "Dynatel 965DSP")	65
5.2.7: Loading coils test (using "Dynatel 965DSP")	65
5.2.8: Frequency response test (using "Dynatel 965DSP")	65
5.3: Primary network faults analysis	65
5.4: Secondary network evaluation of cabinet 3, cable 3, "El- kab" exchange, Port Said, Egypt	68
5.4.1: TDR test (using "Dynatel 965DSP")	68
5.4.2: Insulation resistance test (using "MEGGER BWW80")	68
5.4.3: Capacitance measurement (using "Dynatel 965DSP")	68
5.4.4: DC voltage measurement (using "Dynatel 965DSP")	68
5.4.5: AC voltage measurement (using "Dynatel 965DSP")	68
5.4.6: Occupied lines test (using "Dynatel 965DSP")	68
5.4.7: Loading coils test (using "Dynatel 965DSP")	68
5.4.8: Frequency response test (using "Dynatel 965DSP")	68
5.5: Secondary network faults analysis	69
5.6: TE network real examples	70
5.6.1: Exchanges of Port Said city, Egypt	70
5.6.2: Different places in Egypt	72
CHAPTER SIX: Line Parameters And RFL Measurement Using "Three	76
Voltmeter Method"	70
6.1: Introduction	78
6.2: Telecom Egypt Company standard values	78
6.3: RLCG parameterized model	79
6.4: Three voltmeter method measuring circuit and peak detector	80
6.5: Measuring of transmission line parameters experimental results	81
6.6: RFL using three voltmeter method	87
6.6.1: RFL for a pair of single faulty wire	87
6.6.2: RFL for a pair of single faulty wire simulation and experimental results	89
6.6.3: RFL of a pair of two faulty wires	89

CHAPTER SEVEN: Conclusions and Future Work	94
Appendices	98
References	180

In loving memory of my mother, $Reda\ El\mbox{-}Shami$

To my wife and family

Acknowledgment

The author wishes to express his praise to *Allah* for completing this work. The deepest thanks and appreciation to *prof. Dr. Abdelhalim Zekry*, for suggesting the present line of work, careful guidance and encouragement.

Thanks and appreciation also to *Dr. Mohamed Abouelatta*, for helping me and providing the facilities for this work.

Thanks and appreciation also to *Mr. Eng. Elhoseiny Adel Mohamed*, for his great support and continuous encouragement during this work.

Abstract

The landline fixed telephone copper network of Telecom Egypt (TE) company is evaluated. A sample of that network is tested using different available tests. The imperfections of the network is discussed and analyzed to specify the reasons for those imperfections. A new methodology to measure the transmission line parameters and determine the Resistance Fault Location (RFL) using "Three Voltmeter Method" is also introduced. The parameters measurement error percentage is acceptable (< 10%) for resistance, capacitance, characteristic impedance, attenuation constant and phase constant. The inductance and conductance suffer from small accuracy values. The RFL measurement has an error percentage of 6.54% for short cable length and small error value. The methodology used the "Three Voltmeter Method" in addition to Data Acquisition System (DAS).

List of Figures

Figure 1.1 Connection of two subscribers	6
Figure 1.2 The concept of exchange	6
Figure 1.3 The exchange boundary	7
Figure 1.4 Public switched Telephone Network (PSTN)	8
Figure 1.5 Secondary network numbering system	14
Figure 1.6 Direct Feed Area network schematic diagram	15
Figure 1.7 TC-450 underground cable	17
Figure 1.8 TC-154 cable quad color code	18
Figure 2.1 Incremental section of twisted pair transmission line	24
Figure 2.2 Twisting process	28
Figure 2.3 Ideal and actual twisting	29
Figure 3.1 Basic schematic of three voltmeter method	34
Figure 3.2 Three voltmeter method vector diagram	35
Figure 3.3 The major blocks of the three voltmeter method	38
Figure 3.4 The measuring setup for the three voltmeter method	38
Figure 3.5 The basic circuit of differential amplifier	39
Figure 3.6 AMP03 precision difference amplifier	40
Figure 3.7 Peak detector circuits	42
Figure 3.8 EL8202 Peak detector	42
Figure 3.9 Precision peak detector	43
Figure 3.10 Computer based data acquisition block diagram	44
Figure 4.1 Test points of telephone network	51
Figure 4.2 Active good telephone line	53
Figure 4.3 Crosstalk fault	55
Figure 4.4 Different types of pair split fault	56
Figure 4.5 An example of the ground fault	57
Figure 4.6 TDR principle of operation	58
Figure 4.7 Different TDR fault waveforms	59
Figure 4.8 "Dynatel 965DSP" insulation resistance screen	60
Figure 5.1 "El-kab" exchange telephone network usage	66
Figure 5.2 The cabinet 3-3 network usage over the past three years	66
Figure 5.3 Ratio of the primary faulty pairs to the good pairs	67
Figure 5.4 Types and reasons of the sample primary network faults	67
Figure 5.5 Secondary network distribution points	69
Figure 5.6 Secondary network different fault reasons	70
Figure 5.7 Distribution point in "Port Fouad" exchange, Port Said	71
Figure 5.8 Distribution point in "El-zohor" exchange, Port Said	71
Figure 5.9 Distribution point in "Port Said" exchange, Port Said	72
Figure 5.10 Distribution point in "Abdelkader" exchange, northen coast	73
Figure 5.11 A cabinet from "El-nozha 3" exchange, Cairo	73
Figure 5.12 A cable splice in Cairo	74
Figure 6.1 The modified three voltmeter method measuring circuit	80

Figure 6.2 Peak detector circuit	81
Figure 6.3 Resistance per Km	82
Figure 6.4 Inductance per Km	83
Figure 6.5 Capacitance per Km	84
Figure 6.6 Conductance per Km	84
Figure 6.7 Characteristic impedance	85
Figure 6.8 Attenuation constant per Km	86
Figure 6.9 Phase constant per Km	87
Figure 6.10 A pair of single faulty wire RFL circuit	88
Figure 6.11 Single faulty wire line location error percentage (10 K Ω to 1016 K Ω)	90
Figure 6.12 "Dynatel 965DSP" RFL sample error (%)	90
Figure 6.13 A pair of two faulty wires RFL circuit	91
Figure 6.14 Two faulty wires line location error percentage	93

List of Tables

Table 1.1 Loop resistance of different wire gauges	7
Table 1.2 TC-450 standard values	17
Table 1.3 TC-154 standard values	18
Table 6.1 TE non loaded line standard values	79

List of Symbols

\mathfrak{I}	Imaginary part of a complex number
N	Number of lines
R	Resistance per unit length of the transmission line
\Re	Real part of a complex number
L	Inductance per unit length of the transmission line
L_0	Low frequency inductance
L_{∞}	High frequency inductance
C	Capacitance per unit length of the transmission line / Speed of light in free space
C∞	Contact capacitance
G	Conductance per unit length of the transmission line
V	Voltage / Velocity
V_{i}	Input voltage
V_{o}	Output voltage
I	Current
f	Frequency
ω	Angular frequency
Z	Impedance per unit length
Y	Admittance per unit length
γ	Propagation constant
α	Attenuation constant
β	Phase constant
θ	Phase angle
λ	Wavelength
V_p	Phase velocity
V_{g}	Group velocity
$ au_{ m g}$	Group delay
Z_0	Characteristic impedance
Z_{i}	Input impedance
Z_L	Load impedance
Z_{S}	Source impedance
d	Distance
$\rho_{\rm s}$	Source reflection coefficient
$ ho_{\scriptscriptstyle L}$	Load reflection coefficient
E	Electric field
В	Magnetic field
Z_{ioc}	Open circuit transmission line input impedance
Z_{isc}	Short circuit transmission line input impedance
Z_{x}	Unknown impedance
R_{x}	Unknown resistance
X_x	Unknown reactance

Unknown reactance Known impedance

- R_s Known (reference) resistance
- X_s Known (reference) reactance
- V_T Peak voltage across the voltage source
- V_x Peak voltage across the unknown impedance
- V_s Peak voltage across the known impedance
- K_r Individual resistor tolerance
- ε_r Dielectric constant
- r_{oc} Copper DC resistance
- r_{os} Any steel DC resistance
- a_c Arbitrary constantconstant
- a_s Arbitrary constant
- b Arbitrary constant
- C₀ Arbitrary constant
- C_e Arbitrary constant
- g₀ Arbitrary constant
- g_e Arbitrary constant
- F_x Ground fault resistance
- F_y Ground fault resistance
- T_n Tip near end terminal
- R_n Ring near end terminal
- T_f Tip far end terminal
- R_f Ring far end terminal