UPGRADING AND UTILIZATION OF SOAPSTOCK AND SOME AGRICULTURE WASTE FOR PREPARATION THE LUBRICATING GREASES

Submitted By Ahmed Aly Abd El-Wahed Ibrahim

B.Sc. of Science, (General Oceanography), Faculty of Science, Alexandria University, 1986
 Master of Chemical Oceanography, Faculty of Science,
 Alexandria University, 1999

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2016

UPGRADING AND UTILIZATION OF SOAPSTOCK AND SOME AGRICULTURE WASTE FOR PREPARATION THE LUBRICATING GREASES

Submitted By

Ahmed Aly Abd El-Wahed Ibrahim

B.Sc. of Science, (General Oceanography), Faculty of Science, Alexandria University, 1986
 Master of Chemical Oceanography, Faculty of Science,
 Alexandria University, 1999

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Mohamed Youssef El-Kady

Emeritus Prof. of Organic Chemistry Faculty of Science Ain Shams University

2-Prof. Dr. Refaat Ahmed El-Adly

Prof. of Petroleum Chemistry Petroleum Research Institute

3-Dr. Mostafa Mohamed Hassan Khalil

Associate Prof. in Department of Chemistry Faculty of Science Ain Shams University

2016

APPROVAL SHEET

UPGRADING AND UTILIZATION OF SOAPSTOCK AND SOME AGRICULTURE WASTE FOR PREPARATION THE LUBRICATING GREASES

Submitted By

Ahmed Aly Abd El-Wahed Ibrahim

B.Sc. of Science, (General Oceanography), Faculty of Science, Alexandria University, 1986Master of Chemical Oceanography, Faculty of Science,

Alexandria University, 1999

This Thesis Towards a Doctor of Philosophy Degree in Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Mamdouh Sayed Dohim

Prof. of Petroleum Chemistry Petroleum Research Institute

2-Prof. Dr. Taha Abd El Azzem Mohamed

Prof. of Analytical Chemistry and Head of Department of Environmental Basic Sciences - Institute of Environmental Studies and Research Ain Shams University

3-Prof. Dr. Mohamed Youssef El-Kady

Emeritus Prof. of Organic Chemistry Faculty of Science Ain Shams University

4-Prof. Dr. Refaat Ahmed El-Adly

Prof. of Petroleum Chemistry Petroleum Research Institute

2016

بننمالله الشخمر الشحيم

قَالُوا سُبْحَانَكَ

لَا عِلْمُ لَنَا إِلَّا مَا عَلَّمْتَنَا نَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ نَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ

(سورة البقرة الأية ٢٢)

صيِّكَ قالله العَظيم

ACKNOWLEDGEMENT

I wish to express my sincere gratitude and great thanks to Dr. M.Y. El-Kady, professor of Organic Chemistry, Faculty of science, Ain Shams University, for his great support, endless patience, valuable advice, and kind care of this work.

I am also sending my great appreciation for Dr. R.A. El-Adly, Professor of petroleum Chemistry, Egyptian Petroleum Research Institute for his suggesting the research point, guidance, support, deep revision and valuable guidance of this work.

I wish also to introduce great thanks for Dr. M.M.H. Khalil, professor of Analytical Chemistry, Faculty of science, Ain Shams University, for his great support, deep revision, valuable advice, and kind care of this work.

I would like to thank Dr. Modather Farouk Faculty of science, Al-Azher university for his help and cooperation throughout the experimental study of the present thesis and all the lab team who support me by devices, and chemicals needed to carry out this work.

I would like to express my gratitude and appreciation to my family for their patience, encouragement, and motivation for me to move forward.

ABSTRACT

Pruning of the very large quantities of rice straw (RS) which amount to about 3.28 million ton per year causes a series environmental problems. The utilization of rice straw as thickening and filling agents in the production of lubricating grease constitutes, therefore, one of the major outlets in this respect. On the other hand, this could be considered as a novel application in the area of lubricants manufacture. In the present investigation, the physicochemical characteristics of rice straw were determined. This was followed by treating rice straw with sodium hydroxide solutions of different concentrations for a different periods ranging from 2 to 6 hours at various temperatures of 80 °C up to 120 °C Furthermore, vegetable oils have significant potential as a base fluid. In this respect, waste cooking oil was used as a substitute of the fresh The physicochemical properties of the waste cooking oil vegetable oil. were also investigated. Accordingly, the optimum yield from treated rice straw (TRS) and waste cooking oil (WCO) were both utilized preparation of such lubricating grease. The physicochemical properties of one or more were evaluated according to National Lubricating Grease Institute (NLGI) and Egyptian Standard (ES). It was found that the obtained greases have promising results from the economical and environmental aspect.

Table of contents

contents	page
Acknowledgement	I
Abstract	II
List of contents	III
List of tables	VI
List of figures	VII
 Introduction and literature review Chemical composition of agricultural wastwes Chemical composition of rice straw 	3
1.1.2.Chemical composition of peanut shells	5
1.1.3.Chemical composition of olive cake	6
1.2Rice straw1.2.1. Rice production and its waste	7 7
1.2.2. Management of rice straw waste	10
1.2.3. Rice straw burning	11
1.2.4. Utilization of rice straw	12
1.2.5. Rice straw pretreatment	13
1.2.5.1. Physical pretreatment	13
1.2.5.1.1. Milling and grinding pretreatment	13
1.2.5.1.2. Steam pretreatment	14
1.2.5.2. Chemical treatments	14
1.2.5.2.1. Alkaline pretreatment	14
1.2.5.2.2. Acidic pretreatment	16
1.2.5.2.3 Salt pretreatment	18

1.3. Lubricating Greases1. 3.1. History	19 19
1.3.2. Grease Definition	19
1.3.3. Grease Structure	20
1.3.4. Classification of Grease	22
1. 3.4.1. NLGI Classification	22
1.3.4.2. Egyptian Classification	24
1.3.5. Grease Composition	25
1.3.5.1. Base Fluids	26
1.3.5.1.1. Mineral Oils	27
1.3.5.1.2. Synthetic Oils	29
1.3.5.1.3.Bio Oil	29
1.3.5.1.3.1.Used Cooking Oil	30
1.3.5.2.Thickeners	32
1.3.5.2.1. Soap thickeners	36
1.3.5.2.1.1. Lithium Soaps	37
1.3.5.2.1.2. Calcium Soaps	38
1.3.5.2.1.3. Lithium Complex soaps	41
1.3.5.2.1.4. Calcium Complex Soaps	42
1.3.5.2.1.5. sodium Soaps	45
1.3.5.2.2. Inorganic Thickeners	46
1.3.5.2.2.1. Lignin as a Thickener	48
1.3.5.3. Additives	49
1.3.5.4. Grease Properties	50

1.3.5.4.1. Consistency	51
1.3.5.4.2. Nature of Soap Fiber	52
1.3.5.4.3. Microscopic Properties	52
1.3.5.4.3.1. Micro-fiber Greases	53
1.3.5.4.3.2. Short-Fiber Greases	53
1.3.5.4.3.3. Medium-Fiber Greases	54
1.3.5.4.3.4. Long-Fiber Greases	54
1.3.5.4.4. Viscous Flow	55
1.3.5.4.5. Dropping Point	55
1.3.5.4.6. Grease Rheology	56
1.3.5.4.7. Grease based on waste cooking oil	58
Aim of the work	60
2. Experimental Work	62
2. 1 Raw materials2.2 .Analysis methods	62 63
2.2.1. Ash content	63
2.2.2.Silicon Oxide	64
2.2.3. Determination of cellulose	65
2.2.4. Determination of lignin	66
2.2.5. Determination of Hollocellulose	68
2.2.6. Fatty acids analysis for waste cooking oil	68
2.2.7. IR spectrometry	68
2.2.8. Digestion process	69
2.2.9. Grease Preparation	70

2.2.10.Gas Chromatography			
2.2.11. Rheological Test			
2.2.12. Cone Penetration	72		
2.2.13. Dropping Point Test	72		
2.2.14 Oil Separation Test	73		
2.2.15.Total Acidity and Alkalinity	73		
2.2.15.1. Total Acid Number	74		
2.2.15.2. Total Base Number	75		
2.2.16. Detection of Copper Corrosion Test	75		
2.2.17. Oxidation Stability Test	76		
2.2.18. Four-Ball weld test	77		
3. RESULTS AND DISCUSSION	79		
3. 1. Identification and Characterization of the Raw	79		
Materials			
3.1.1. Fluid Lubricants	79		
3.1.2. Composition of the rice straw	84		
3.1.3. Physicochemical properties of the waste	86		
cooking oil			
3.1.4. Physicochemical properties of Soybean Soap	87		
stock			
3.2. Rice straw treatment	90		
3. 2.1. Effect of digestion conditions on the	90		
lignocellulose yield.			
3.2.2. Evaluation of the prepared grease	93		

3.2.3. Rheology of the prepared sodium greas	97
compared with commercial one	
3.2.4. Mechanical and thermal properties of G1 and G2	98
CONCLUSION	101
Summary	103
References	106