

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار الخدار عن ١٥-١٠ % درجة حرارة من ١٥-١٠ مئوية ورطوبة نسبية من ٢٠-٠٤ تل في درجة حرارة من ٢٥-١٥ مئوية ورطوبة نسبية من ٢٥-١٥ له تل المنافذ المناف

بعض الوثائق الاصلية تالفة

المعلومات الجامعية

بالرسالة صفحات لم

ترد بالاصل

CASUNET

Development and Evaluation of Some New Disperse Drug Delivery Systems Using Nanotechnology

A Thesis

Presented to the Graduate School
Faculty of pharmacy, Alexandria University
In partial fulfillment of the
Requirements for the degree

Of

Doctor of Philosophy

In

Pharmaceutics

By

Yosra Shaaban Rabea Elnaggar

M.D.Pharm.Sci., University of Alexandria, 2007

2010

B 01-1

Development and Evaluation of Some New Disperse Drug Delivery Systems Using Nanotechnology

Presented by

Yosra Shaaban Rabea Elnaggar

M.D. Pharm.Sci., University of Alexandria, 2007

For the degree of

Doctor of Philosophy

In

Pharmaceutics

Examiner's Committee:

Prof. Nahila Ahned Boraie

Prof. Sahai M Eshanawany

Prof. - Alugda 22 Mossik.

Approved

Nalila Boraie

3. M. El Shanawany

Macdo & Mosa b

Advisor's Committee:

Prof. Ossama Youssef Abdallah

- Professor of Pharmaceutics
- Department of Pharmaceutics Faculty of Pharmacy-Alexandria University

Prof. Magda Abdel Samih El-Massik

- Professor of Pharmaceutics
- Department of Pharmaceutics Faculty of Pharmacy-Alexandria University

Acknowledgement

First of all, I should thank ALLAH ALKADEER for every thing and for helping me to bring this work into existence

My deepest gratitude, sincere appreciation and everlasting independence are addressed to Professor Dr. Osama Youssef Abdallah, Professor of pharmaceutics, University of Alexandria, who did more than his best to bring this work into light. No words can describe my gratitude and appreciation to the greatest professor and father i have ever met. I will never forget his instructive supervision, fruitful discussions, willing assistance and valuable suggestions to solve problems encountered throughout this work. He taught me many scientific and social concepts, and guided me how to think. He was always there to teach me minor and major scientific principles, in their most accurate and realistic form. He has the upper hand in completion of this work in its present form. I will always owe him any success in my life. Whatever I did or say i will never fulfill his right, only ALLAH AL3AZEEM can do it. I have the entire honor to be one of his students and i will always be.

I wish to express my deepest thanks and gratitude to Professor Dr. Magda Abdel Samih El-Massik, Professor of pharmaceutics, University of Alexandria. Her continuous support and advices were always pushing me forward. She taught me high accuracy and concern with minor details. I hope she accepts my deep cordial appreciation and everlasting gratitude.

I hope to express my cordial appreciation to all staff members of pharmaceutics department, my great professors, colleagues, secretarial and technical staff for their cooperation.

Thank you

Yosra S. R. Elnaggar

Dedication

To my great Mama and 3 body

Co my dear Baba

To Hany, Sherine and Gihan

All love and gratefulness

CONTENTS

LIST OF TABLES	i
LIST OF FIGURES	iii
LIST OF ABBREVIATIONS	v
GENERAL INTRODUCTION	
Terminology and finance	2
Health care needs with promising nano-enabled technology impact	2
Nanotechnology and drug delivery 1. Classes of nanotechnologies.	3
1.1. Pure drug nanotechnologies.	4
1.1.1. Class A nanodrugs.	4
	5
1.1.2. Class B nanodrugs. 1.1.3. Nanodrugs on market.	•
1.1.3.1. Rapamune.	5
1.1.3.2. Abraxane.	6
1.2. Metal-based nanotechnologies.	6
1.2.1. Gold nanoparticles, nanoshells and nanorods.	6
1.2.2. Silver nanoparticles (AgNPs).	6
1.2.3. Silica nanoparticles.	7
1.2.4. Platinum Nanoparticles.	7
1.3. Polymer based nanotechnologies	7
1.3.1. Polymeric micelles	7
1.3.2. Polymeric nanoparticles	8
1.3.3. Dendrimers	8
1.4. Lipid-based nanotechnologies	9
1.4.1. Liposomes 1.4.2. Nanoemulsions	9
	10
1.4.3. Self-nanoemulsifying drug delivery systems (SNEDDS)1.4.4. Solid lipid nanoparticles (SLN)	11
1.4.5. Nano-structured lipid carriers (NLC)	11
1.4.6. Lipid Drug Conjugate Nanoparticles (LDC-NP)	11 13
2. Nanotoxicology	13
3. Biopharmaceutical challenges and regulatory status	14
3.1. Suitable drug candidates for oral lipid-based delivery systems	14
3.2. Interplay of physicochemical and biopharmaceutical drug properties with the physiological environment of the GIT	16
3.3. Rational for lipid-based nanomedicines in oral drug delivery	17
3.4. The Lipid Formulation Classification System	18
3.5. Safety aspects of ingredients	19

3.6. Lipid digestion and drug solubilization in the small intestine	20
4. Novel approaches for lipid-based nanomedicines delivery and design	21
4.1. Oral delivery and lymphatic targeting	21
4.2. Oral delivery and pre-systemic clearance	22
4.2.1. Inhibitory transporters and hydrolytic enzymes	22
4.2.2. Lipid based nanomedicines of hydrophilic drugs	23
4.2.2.1. Oral delivery of proteins and anticancer drugs	23
4.2.2.2. Rational for hydrophilic drug incorporation	24
	25
OBJECTIVE OF THE WORK	
PART ONE	
SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEMS OF TAMOXIFEN CITRATE: DESIGN AND OPTIMIZATION	
Introduction.	29
Experimental 1. Materials	33
2. Equipment.	34
3. Methodology.	35
3.1. Solubility studies.	35
3.2. Preliminary screening of surfactants.	35
3.3. Preliminary screening of co-surfactants.	35
3.4. Phase diagram study.	35
3.5. Preparation of tamoxifen citrate loaded SNEDDS.	38
3.6. Formula optimization.	38
3.6.1. Robustness to dilution.	38
3.6.2. Globule size analysis.	38
3.6.3. Cloud point measurement.	38
3.6.4. Transmission electron microscopy (TEM)	39
3.6.5. Drug release study	39
Results and discussion	40
Conclusion	61
PART TWO	
IMPLICATIONS OF NANOTECHNOLOGY FOR SILDENAFIL CITRATE THERAPY	

CHAPTER ONE

SILDENAFIL CITRATE LOADED NANOSTRUCTURED LIPID CARRIERS VERSUS SOLID LIPID NANOPARTICLES

Introduction	67
Experimental	71
1. Materials	71
2. Equipment	72
3. Methodology	73
3.1. High Performance Liquid Chromatography (HPLC)	73
3.2. Solubility studies	73
3.3. Preparation of SLN and NLC	73
3.4. Particle size analysis	74
3.5. Determination of entrapment efficiency	77
3.6. Transmission Electron Microscopy (TEM)	77
3.7. Freeze drying and reconstitution	77
3.8. Differential scanning calorimetry (DSC)	77
3.9. In-vitro drug release	78
3.10. Stability study	78
Results and discussion	79
Conclusion	105
CHAPTER TWO	
NANOEMULSION AND SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEM OF SILDENAFIL CITRTAE	
Introduction	107
Experimental 1. Materials	110
	110
2. Equipment	111
3. Methodology	112
3.1. Preparation of sildenafil citrate-loaded SNEDDS	112
3.2. Preparation of sildenafil citrate-loaded nanoemulsion	112
3.3. Robustness to dilution	112
3.4. Globule size analysis	112
3.5. Cloud point measurement	113
3.6. Transmition electron microscopy	113
3.7. In-vitro drug release	113
Results and discussion	114
Conclusion	123
CHAPTER THREE	
RELEVANCE OF NANOMEDICINE TO ENHANCE SILDENAFIL CITRTAE FRANSDERMAL PERMEATION OF VIA HUMAN SKIN	
Introduction	125

Experimental	129
1. Material	129
2. Equipment	129
3. Methodology	130
3.1. High performance liquid chromatography	130
3.2. Skin collection and preparation	130
3.3. In-vitro skin permeation studies	131
3.4. Drug Flux and apparent permeability coefficient	133
Results and discussion	134
Conclusion	146
SUMMARY	147
SOMMAN	151
REFRENCES	
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
I	Linid formulation classification	
II	Lipid formulation classification system.	19
_ -	Composition of SNEDDS constructing phase diagram A.	36
III	Composition of SNEDDS constructing phase diagram B.	37
IV	Emulsification efficiency of various surfactants using different oily phase.	42
V	Emulsification efficiency of various co-surfactants using Cremophor	44
	RH40 as surfactant and different Maisine: Caproyl ratios (1:2, 1:1 and	
	2:1).	
VI	Composition and physical properties of F1, F2, and F3 SNEDD	49
	formulations.	43
VII	Composition of the prepared NLC formulations (% w/v).	75
VIII	Composition of SLN prepared formulations (%w/v).	76
IX	Characterization of the prepared SLN formulations.	82
X	Characterization of the prepared NLC formulations.	84
XI	Peak onset, melting point and enthalpy of DSC analysis	
XII	Stability study of sildenafil citrate loaded SLN and NLC dispersion.	97
XIII	Characterization of sildenafil citrate-loaded SNEDDS elaborated.	101
XIV	Summarized comparising Cal. C. 1.11	117
211 V	Summarized composition of the four delivery systems under study	132
VII	(% w/v).	
XV	Cumulative amont (nmole) of SC released from different nanomedicines	140
	and drug suspensions with time.	
XVI	Sildenafil citrate flux values (F) from different nanomedicines and drug	143
	suspensions (mean± S.D)	