

Toxic Acute Liver Failure

Essay

Submitted in Partial Fulfillment of the Master's Degree in

Intensive Care

By

Usama Mohamed Rabea Moustafa

(M.B., B.Ch.)

Under Supervision of

Prof. Dr. Samia Ibrahim Sharaf

Professor of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Prof. Dr. Hatem Said Abdel Hamid

Professor of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Hany Victor Zaki

Lecturer in Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain-Shams University
2015

سورة البقرة الآية: ٣٢

- First and foremost thanks to Allah, the most beneficent and merciful.
- I wish to express my deep appreciation and sincere gratitude to Pro. Dr. Samia Ibrahim Sharaf Professor of Anaesthesia and Intensive Care, Ain Shams University, who suggested this subject for reviewing and for her supervision, continuous help and patience. It was a great honor to me to work under her supervision.
- I wish to express my sincere thanks and deepest gratitude to Prof. Dr. Hatem Said Abdel Hamid Professor of Anaesthesia and Intensive Care, Ain Shams University for his eminent guidance, encouragement and revision throughout the work.
- Special appreciation to Dr. Hany Victor Zaki Lecturer in Anaesthesia and Intensive Care, Ain Shams University, for his kind advice, valuable instructions and continuous support which was the corner stone in the completion of this work.
- I wish to express my sincere thanks to My examiners for reviewing and their bests.
- Agst but not least, I would like to present a lot of thanks to My family, friends, and to my colleagues, whose without their help and support, this work could not come to birth.

🖎 Usama Mohamed Rabea Moustafa

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	III
List of Figures	IV
• Introduction	1
Aim of the work	3
Review of literature	
- Chapter (1): Aetiology and patho	physiological
considerations of toxic	acute liver
failure	4
- Chapter (2): Diagnosis of toxic acute liv	ver failure28
- Chapter (3): Management and preven	tion of toxic
acute liver failure	47
• Summary	76
• References	81
• Arabic summery	

List of Abbreviations

AASLD: American association for the study of liver

disease

ABC: Adenosine triphosphate- binding cassette

ALF : Acute liver failure

ALP : Alkaline phosphatase

ALT : Alanine aminotransferase

ARDS : Acute respiratory distress syndrome

AST : Aspartate aminotransferase

ATP : Adenosine triphosphate

BAL: Bioartificial liver

BSEP: Bile-salt export protein

CBF : Cerebral blood flow

CCP : Cerbral perfusion pressure

CHM : Chinese herbal medicines

CYP : Cytochrome p450

DILI : Drug-induced liver injury

HAART: Highly active antiretroviral therapy

HAV: Hepatitis A virus

HBc IgM: Hepatitis B core immunoglobulin M

HBs Ag: Hepatitis B Surface antigen

HCV: Hepatitis C virus

HDS: Herbal and dietary supplements

E List of Abbreviations &

HEV: Hepatitis E virus

HIV: Human immune-deficiency virus

HLA: Human leukocyte antigens

HSV: Herpes simplex virus

ICH : Intracranial hypertension

ICP : Intracranial pressure

ICU: Intensive care unit

INR: International normalized ratio

KCH : King's college hospital

MDR : Multi-durg resistant protein

MELD: Model for end stage liver disease

UDP : Uridinediphosphate

UGT: Uridinediphosphate-Glucuronyltrasferases

ULN: Upper limit normal

VZV : Varicella zoster virus

List of Tables

Table No	Title	Page
Table (1)	Cytochrome P450 inhibitors and	7
	inducers.	
Table (2)	Classification of toxic hepatocellular	16
	injury.	
Table (3)	Drugs which may cause idiosyncratic	21
	liver injury leading to acute liver failure.	
Table (4)	Classification of drug induced liver	28
	injury	
Table (5)	Classification of liver test abnormalities	30
Table (6)	Initial laboratory analysis of acute liver	35
	failure.	
Table (7)	Grading system for hepatic	49
	encephalopathy	
Table (8)	King's Criteria (Potentially helpful	74
	indicators of poor prognosis in patients	
	with ALF).	

List of Figures

Figure No	Title	Page
Fig. (1)	Hepatic drug metabolism.	5
Fig. (2)	Mechanisms of drug induced liver injury.	17
Fig. (3)	Liver zones	39

Introduction

Acute liver failure (ALF) is an uncommon but dramatic clinical syndrome characterized by sudden and massive hepatic necrosis that results in jaundice, coagulopathy [international normalized ratio (INR) \geq 1.5], and hepatic encephalopathy (any degree of altered mentation) in the absence of pre-existing liver disease (*Lee*, 2012).

The most prominent causes include drug-induced liver injury, viral hepatitis, autoimmune liver disease and shock or hypoperfusion. Many cases have no identifiable cause (*Hiramatsu et al.*, 2008).

The most common drugs implicated in acute druginduced liver injury (DILI) are acetaminophen followed by antibiotics (*Galan et al.*, 2005).

Hepatotoxicity associated with herbal and dietary supplements (HDS) use may be missed, there are no accurate estimates of the frequency of hepatotoxicity attributable to HDS as patients often do not report the use of herbal products to their clinicians, and self-medicate with large amounts (*American Botanical Council*, 2009).

The initial clinical features of ALF may be nonspecific and may include anorexia, fatigue, abdominal

pain and fever. As the metabolic and detoxification function of liver becomes impaired, the signs of ALF emerge, including jaundice, encephalopathy, coagulopathy, haemodynamic instability, acute lung injury/acute respiratory distress syndrome (ARDS), renal failure, sepsis, and metabolic disturbance (*World*, 2013).

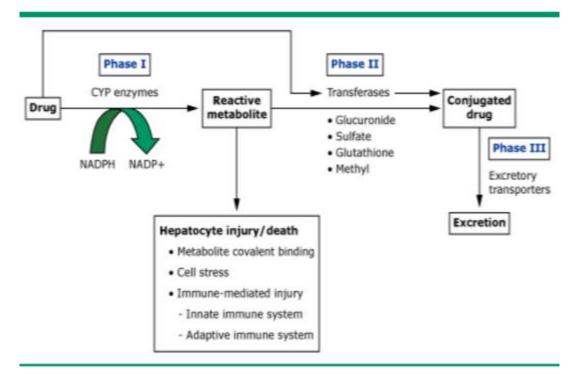
Cerebral edema leading to intracranial hypertension (ICH) is one of the major causes of morbidity and mortality in patients with ALF. The pathogenesis of cerebral edema and ICH in ALF appears to be multifactorial. Ammonia is converted in the astrocytes to osmotically active glutamine, producing osmotic cerebral edema (*Bjerring et al.*, 2009).

The management of ALF challenges the best skills because of its rapid progression and frequently poor outcomes. Early identification of the etiology & specific treatment ALF is crucial to improve the outcome. Extrahepatic organ failure should be well managed with advanced intensive care management. Better-targeted use of liver transplantation techniques becomes important to save the patients who fail to recover spontaneously. A better understanding of the pathophysiology of ALF will probably lead to further improvement in survival rates (*Yan et al.*, 2012).

Aim of the work

The aim of this review is to highlight the aetiology and pathophysiological aspects of toxic acute liver failure and to provide recommendations for the management of this potentially dangerous condition.

Aetiology and pathophysiological considerations of toxic acute liver failure


Role of the liver in drug metabolism

The liver is responsible for the selective uptake, concentration, metabolism, and excretion of the majority of drugs and toxins that are introduced into the body. While some parent drugs can directly cause hepatotoxicity, it is generally the metabolites of these compounds that lead to drug-induced liver injury (DILI). These compounds are processed by a variety of soluble and membrane-bound enzymes, especially those related to the hepatocyte endoplasmic reticulum. Each drug has its specific enzyme disposal pathway(s) of biotransformation involving one or more of these enzyme systems (*Park et al.*, 2005).

Genetic variation in drug metabolism is increasingly being recognized as a factor in the development of DILI. Environmental factors (eg, alcohol use) may also alter the processing of drugs and toxins. The majority of drugs absorbed from the gastrointestinal tract are lipophilic and water-insoluble. They are rendered water-soluble via hepatic metabolism and thus, more easily excreted in the bile or renally filtered. Exogenous products are hepatically

metabolized predominantly through two mechanisms: phase I and phase II reactions (fig.1) (*Park et al.*, 2005).

Fig. (1) Hepatic drug metabolism. According to: (*Park et al.*, 2005).

The subsequent products are then excreted via excretory transporters on either the canalicular or sinusoidal membranes (phase III reactions) (*Gunawan and Kaplowitz*, 2007).

Phase I reactions: Phase I reactions transform lipophilic molecules into more polar, hydrophilic molecules via oxidation, reduction, or hydrolysis. These reactions are

catalyzed by the membrane-bound cytochrome P450 superfamily of mixed function oxidases (CYP) (Werck-Reichhart and Feyereisen, 2000).

Approximately 60 genes coding for CYP proteins have been identified in humans. These enzymes are organized into families (eg, CYP2) and subfamilies (eg, CYP2E1). The vast majority of these enzymes are located on the cytoplasmic side of the membrane of the endoplasmic reticulum (microsomal-type) or the mitochondria (mitochondrial type). The microsomal-type is responsible for phase I drug metabolism (*Danielson*, 2002).

Hepatic metabolism of exogenous drugs and toxins is performed mainly by the CYP1, CYP2, and CYP3 families, with a smaller contribution from CYP4. The remaining families are often highly specific for the metabolism of endogenous compounds and are not inducible bv compounds. The exogenous most important drug metabolizing member is CYP3A4, which comprises approximately 60 percent of all hepatic cytochromes and catalyzes the biotransformation of over 50 percent of commonly used drugs. Free radicals and toxic electrophilic can be produced during compounds this process (*Danielson*, 2002).

CYP activity: Cytochrome activity varies considerably depending in part upon the concentration of the enzymes and the degree of induction by exogenous factors (Table 1) (*Hansten and Horn*, 2014).

<u>Table (1):</u> Cytochrome P450 inhibitors and inducers. According to: (*Hansten and Horn, 2014*).

Strong inhibitors	Moderate inhibitors	Strong inducers	Moderate or weak
– Atazanavir	– Abiraterone	– Carbamazepine	- Aprepitant
– Boceprevir	– Amiodarone	– Dexamethasone	– Armodafinil
Chloramphenicol	Aprepitant	– Enzalutamide	– Artemether
- Clarithromycin	– Bicalutamide	– Fosphenytoin	– Bexarotene
- Cobicistat and cobicistat	– Cimetidine	– Mitotane	- Calcitriol
containing coformulations	Ciprofloxacin	– Nafcillin	– Clobazam
– Conivaptan	Clotrimazole	– Nevirapine	– Dabrafenib
– Delavirdine	– Crizotinib	– Oxcarbazepine	– Desvenlafaxine
– Fosamprenavir	– Cyclosporine	– Pentobarbital	– Dicloxacillin
– Idelalisib	– Desipramine	– Phenobarbital	– Eslicarbazepine
– Indinavir	– Diltiazem	– Phenytoin	– Estrogens
- Itraconazole	– Danazol	– Primidone	– Etravirine
- Ketoconazole	– Dronedarone	– Rifabutin	- Exemestane
– Lopinavir	– Erythromycin	- Rifampin (rifampicin)	– Flucloxacillin
– Nicardipine	– Fluconazole	– Rifapentine	- Griseofulvin
– Posaconazole	– Haloperidol		- Hydrocortisone
- Ritonavir and ritonavir	– Metronidazole		- Medroxyprogesterone
containing coformulations	- Miconazole		– Modafinil
– Saquinavir	- Mifepristone		– Paclitaxel
– Telaprevir	Norfloxacin		– Pioglitazone
- Telithromycin	– Quinupristin-		– Prednisone
- Voriconazol	dalfopristin		– Ritonavir
	- Tetracycline		- Terbinafine
	– Verapamil		