The Diagnostic Value of Serum Golgi protein 73 (GP 73) as a Biomarker for Hepatocellular Carcinoma in Patients with HCV related Liver Cirrhosis

Thesis

A Study Submitted for the Partial Fulfillment of the Master Degree in Internal Medicine

By

Nouran Mohamed Said M.B.B.Ch

Under the Supervision of

Prof Dr/ Mohamed Abdelfattah Al Malatawy

Professor of Internal Medicine Ain Shams University

Dr/ Sherif Mouneir Mohamed

Assistant Professor of Internal Medicine Ain Shams University

Dr/ Hany Aly Hussein

Lecturer of Internal Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof Dr. Mohamed Abdelfattah Al Malatawy,** Professor of Internal Medicine, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Sherif Mouneir Mohamed**, Assistant Professor of Internal Medicine, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I owe much to **Dr. Hany Aly Hussein**, Lecturer of Internal Medicine faculty of medicine, Ain Shams University, for his continues help, valuable suggestions and patience throughout the whole work.

Last but not least, I dedicate this work to my **family** and **husband** whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Nouran Mohamed Said

Abstract

Hepatocellular carcinoma is one of the most common malignancies worldwide and the most common primary malignant tumor of the liver. Diagnosis of HCC at earlier stages improves patient outcomes. Currently, the most commonly used methods for screening and diagnosing HCC are ultrasound imagingand serum -fetoprotein (AFP) concentration measurements, but the diagnostic value of AFP is recently challenged due to its low sensitivity and specificity.

Golgi protein 73 (GP73, also known as Golph2), is a 400 aminoacid, 73-kDa resident Golgi-specific membrane protein expressed bybiliary epithelial cells in normal liver, and its expression isincreased markedly in chronic liver diseases, especially in HCC cells. It is responsible for decreasing the surface area of the Golgi apparatus and hence maintaining its integrity during cellular stress and many studies identified it as a potential biomarker for HCC. The study was conducted upon 75 subjects who were divided into three groups: group I included 25 patients with liver cirrhosis and hepatocellular carcinoma, group II included 25 patients with HCV related liver cirrhosis without HCC, group III had 25 healthy subjects as controls.

In this study, the serum levels of GP73 were highest in patients of group I with HCC compared to those with liver cirrhosis and the control groups. Also GP73 values increased with tumor number , over all size and also correlated with vascular invasion, where as those of AFP correlated with vascular invasion and didn't correlate with tumor number or size.

At a cut off value 5, the diagnostic sensitivity and specificity of GP73 for selective detection of HCC over the cirrhotic group was 88% and 84.6% respectively. At a cut off value 7.12, the diagnostic sensitivity and specificity of AFP for selective detection of HCC over the cirrhotic group was 76% and 76%. In conclusion, Golgi protein 73 can be used as a biomarker for hepatocellular carcinoma with a good diagnostic and prognostic value.

Key words: hepatocellular carcinoma, Golgi protein 73, alfa-feto protein

Contents

List of Abbreviations	i
List of Tables	ii
List of Fig.s	iii
Introduction and Aim of the Work	1
Review of Literature	3
Patients and Methods	86
Results	93
Discussion	112
Summary	118
Conclusion	120
Recommendations	121
References	122
Arabic Summary	

List of Abbreviations

AASLD : American Association for the Study of Liver

Diseases

AFP : Alfa -feto protein

AFP-L3 : Lens culinarisagglutinin-reactive alpha-

fetoprotein

AFU : Alpha L-Fucosidase

AIDS : Acquired immunodeficiency syndrome AJCC : American Joint Committee on Cancer

ALD : Alcoholic liver disease
ALP : Alkaline phosphatase
ALT : Alanine transaminase
AST : Aspartate transaminase

BCLC : Barcelona Clinic Liver Cancer

BMI : Body mass indexBUN : Blood urea nitrogenCA : Cancer antigen

CD : Cluster of diffrentiation CEA : Carcinoembyonic antigen

CK : Creatine kinase

CLIP : Cancer of the Liver Italian Program

Cr : Creatinine

CT : Computed tomography

DgCP : Des-gamma-carboxyprothrombin

DNA : Deoxyribonucleic acid

EASL : European Association for the Study of the

Liver

ECM : Extracellular matrix

ECOG : Eastern Cooperative Oncology Group

EGF : Epidermal growth factor

EMT : Epithelial-mesenchymal transition

EPO : Erythropoietin

ETOH : Ethanol

GGT : Gamma-glutamyltranspeptidase

List of Abbreviations (Cont.)

GOLM1 : Golgi membrane protein 1 GOLPH2 : Golgi phosphoprotein 2

GP73 : Golgi protein-73 GPC3 : Glypican-3 Hb : Haemoglobin

HBeAg : Hepatitis B e antigen

HBsAg : Hepatitis B surface antigen

HBV : Hepatitis B virus

HCC : Hepatocellular carcinoma

HCV : Hepatitis C virusHDV : Hepatitis delta virus

HIV : Human immunodeficiency virus

HLA : Human leukocyte antigen

HNE : Hydroxynonenal

HS-AFP : Hepatoma specific alfafeto protein

HSP : Heat shock protein

HTERT : Human telomerase reverse transcriptase

mRNA

ICAM-1 : Intercellular Adhesion Molecule 1 ICC : Intra hepatic cholangiocarcinoma

IGF-II : Insulin-like growth factor-II

IgG : Immunoglobulin G IgM : Immunoglobulin M

IL 8 : Interleukin-8 IL28B : interleukin-28B

INR : International normalized ratio

MAGE-1 : Melanoma antigen gene

MELD : Model for end-stage liver disease

MMP : Matrix metalloproteinaseMRI : Magnetic resonance imaging

mRNA : Messenger RNA

MT1-MMP: Membrane-type matrix metalloproteinase 1

MWA : Microwave ablation

List of Abbreviations (Cont.)

NAFLD : Non-alcholic fatty liver diseaseNASH : Non-alcholic steatohepatitisNPV : Negative predictive value

5`-NPD : 5`-Nucleotide phosphodiesterase OLT : Orthotopic liver transplantation

OS : Overall survival

8-OHdG : 8-hydroxydeoxyguanosine PBC : Primary biliary cirrhosis

PDGF : Platelet derived growth factor PEI : Percutaneous ethanol injection PET : Positron emission tomography

PLT : Platelet

PPV : Positive predictive value
PSA : Prostatic specific antigen
PSC : Prostatic specific antigen

PSC : Primary sclerosing cholangitis PVE : Portal vein embolization

PVT : Portal vein thrombosis
RFA : Radiofrequency ablation

RNA : Ribonucleic acid

ROC : Receiver operating curve

SBP : Spontaneous bacterial peritonitis

SCCA : Serum squamous cell carcinoma antigen

SD : Standard deviation

SHARP : Sorafenib HCC Assessment Randomised Protocol

SPDI : Secreted protein discovery initiative

SU : Sunitinib malate

TACE : Transcatheter arterial chemoembolization.

TGF : Transforming growth factor

TGF-B1 : Transforming growth factor-beta 1
 TGF- 1 : Transforming growth factor beta 1
 TIMPs : Tissue inhibitors of metalloproteinases

TK : Tyrosine kinases

TMD : Transmembrane domain

List of Abbreviations (Cont.)

TNM : Tumor, Node, Metastasis

UICC : Union Internationale Contre le CancerUNOS : United Network for Organ Sharing

US : Ultrasound

VEGF : Vascular endothelial growth factor

WBC : White blood cell

List of tables

Table	Title	Page
1	Child-Trucotte-Pugh classification of	30
	severity of cirrhosis	
2	TNM staging for hepatocellular cancer	52
3	Okuda staging system for HCC.	53
4	CLIP scoring system for hepatocellular	54
	cancer	
5	Eastern Cooperative Oncology Group	55
	(ECOG, Zubrod, WHO) performance	
	scale	
6	Descriptive analysis of the study	94
	population as regards the age	
7	Descriptive analysis of the study	94
	population as regards the sex	
8	Descriptive analysis of the study	95
	population as regards the smoking status	
9	Descriptive analysis of groups I and II as	95
	regards the Child score	
10	Description of different laboratory	96
	values in the three groups	
11	Comparison between the three groups as	98
	regards the age	
12	Comparison between the three groups as	98
	regards the smoking status	
13	Comparison between the three groups as	99
	regards the sex	
14	Comparing the three groups regarding	100
	the laboratory data	
15	Comparison between groups I and II as	101
	regards modified Child-Pugh score	
16	Comparison between the three groups as	102
	regards AFP	
17	Comparison between the three groups as	102
	regards GP73	

List of tables (Cont.)

Table	Title	Page
18	Number of focal lesions in patients with	104
10	HCC "group I"	104
19	Relation between AFP and vascular	104
	invasion	
20	Relation betweenGP73 and vascular invasion	104
21	Correlation between GP73 and all other	105
21	parameters in the three groups	103
22	Correlation between AFP and number	106
	and overall size of focal lesions	
23	Diagnostic sensitivity and specificity of	107
	GP73 in detecting the disease	
24	Diagnostic sensitivity and specificity of	108
	GP73 for selective detection of HCC	
25	Diagnostic sensitivity and specificity of	109
	AFP in detecting the disease	
26	Diagnostic sensitivity and specificity of	110
	AFP for selective detection of HCC	
27	Diagnostic sensitivity and specificity of	111
	combined GP73 and AFP for selective	
	detection of HCC	

List of Figures

Fig.	Title	Page
1	Histopathology of cirrhotic liver	4
2	Gross picture of liver cirrhosis	13
3	Sinusoidal events during fibrosing liver injury	14
4	Phenotypic features of hepatic stellate cell activation during liver injury and resolution	17
5	Contrast- enhanced CT scan of a cirrhotic liverdemonstrates a multifocal hepatoma	41
6	AASLD algorithm for investigation of small nodules found on screening in patients at risk for hepatocellular carcinoma	43
7	Diagnostic algorithm and recall policy of HCC according to EASL 2012	45
8	Triple phase CT scanning of hepatocellular carcinoma	48
9	Magnetic resonance imaging of hepatocellular cancer	49
10	Poorly differentiated hepatocellular carcinoma	51
11	General approach to treatment of HCC	56
12	Barcelona Clinic Liver Cancer (BCLC) staging system	57
13	Structure of golgi apparatus	75
14	Structural regions of GOLPH2	76
15	Low but significant sequence homology to proteins with known structures	77
16	Descriptive analysis of the study population as regards the sex	94
17	Comparison between group I and II as regards modified Child-Pugh score	101

List of Figures (Cont.)

Fig.	Title	Page
18	Comparison between the three groups as regards GP73	103
19	Receiver operating curve (ROC) curve analysis of GP73 between patients and controls	107
20	Receiver operating curve (ROC) curve analysis of GP73 between patients in group I and II	108
21	Receiver operating curve (ROC) curve analysis of AFP between patients and controls	109
22	Receiver operating curve (ROC) curve analysis of AFP between patients in group I and II	110
23	Diagnostic sensitivity and specificity of combined GP73 and AFP for selective detection of HCC	111

Introduction

Hepatocellular carcinoma (HCC) is a global health problem, although developing countries are disproportionally affected: over 80% of HCCs occur in such regions. Hepatocellular carcinoma (HCC) is strongly associated with either chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection and is considered the fifth most common cancer and the third leading cause of cancer death worldwide (*Shariff M1,2009*).

There were estimated 748,000 new cases of liver cancer worldwide in 2008, causing 696,000 deaths. Early detection of HCC is therefore extremely important in improving the survival of patients (*Ferlay J et al.*,2008).

Alpha-fetoprotein (AFP) has been the only standard serum marker for the detection of HCC for the last 40 years, even though its sensitivity of 39-65% is not very satisfactory, so identification of better early diagnostic biomarkers is crucial (*Shariff MI*,2009).

Studies have identified Golgi protein 73 (GP73; also named Golgi phosphoprotein 2(GOLPH2)), as a potential novel HCC serum marker GP73 is a 400 amino acid, 73 kDa trans membrane glycoprotein that normally resides within the cis-Golgi complex (*Marrero JA et al*,2005).

Subsequent studies showed that the GP73 serum level is elevated in diverse viral and non-viral liver diseases, including hepatitis, cirrhosis and HCC, and also in non-liver malignances (*Tan LY et al,2009*).

Of significance is that serum GP73 is dramatically elevated in patients with HCC, and the sensitivity and specificity of GP73 for HCC might be superior to those of AFP (*Hu JS*,2010).

Aim of the Work

The aim of this study is to determine the value of serum golgi protein 73 (GP 73) as a biomarker for HCC versus AFP in patients with HCV related liver cirrhosis.