A New Phenotypic Method for Detection of Extended Spectrum β-lactamases in AmpC β-lactamase -producing Klebsiella Species

Ehesis

Submitted For Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Marwa Ghaleb Hamdy Mohamed Abd el Hamid MB BCh. Ain Shams University

Under Supervision of **Doctor / Hala Badr El-Din Ali Othman**

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Doctor/ Dalia Hosni Abd El-Hamid Ahmed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2014

First and foremost, I feel always deeply indebted to ACLAH, the Most Gracious and the Most Merciful.

I would like to express my deepest gratitude and cardinal appreciation to Doctor / Hala Bade El-Din Ali Othman, Assistant Professor of Clinical and Chemical Pathology, who kindly supervised and motivated the performance of this work, for her kind guidance and constant encouragement throughout this work.

I am greatly honored to express my sincere appreciation to Doctor/ Dalia Hosni Abd El-Hamid Almed, Lecturer of Clinical and Chemical Pathology, for her continuous support, help and generous advice throughout this work.

Marwa Ghaleb

I would like to dedicate this thesis To the soul of my Father, to my Mother and to my beloved husband

to them I will never find adequate words to express my gratitude.

Also to all my Family for dealing tactfully and patiently during this work.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	i
List of Figures	vi
Introduction	1
Aim of the Work	4
Review of Literature	
• Extended Spectrum β-Lactamases (ESBLs)	5
Laboratory Diagnosis of ESBLS	16
 AmpC β-Lactamases 	44
 Laboratory Diagnosis of AmpC β-Lactamases 	53
 Laboratory Diagnosis of both ESBLs and AmpO 	Cs71
Prevention and Control	82
Treatment	88
Materials and Methods	97
Results	115
Discussion	124
Summary	130
Conclusion and Recommendations	133
References	134
Arabic Summary	

LIST OF ABBREVIATIONS

Abb.	Meaning
AMC	Amoxicillin/clavulanate
ASC	Active surveillance cultures
ATM	Aztreonam
BA	Boronic acid
BD Phoenix	Becton Dickinson Phoenix Automated
	Microbiology System
BES-1	Brazilian ESBLs
BIL	Bilal
BZBTH2B	Benzo (β) thiophene-2-boronic acid
C. amalonaticus	Citrobacter amalonaticus
C.freundii	Citrobacter freundii
CAZ	Ceftazidime
CDC	Centers for Disease Control and Prevention
CFU	Colony forming unit
CIAT	Ceftazidime-imipenem antagonism test
CLOX	Cloxacillin
CLSI	Clinical and Laboratory Standards
	Institute
CMY	Cephamycins
CPD	Cefpodoxime
CRO	Ceftriaxone
CTT	Cefotetan
CTX	Cefotaxime
CTX-M	Cefotaximase-Munich
ddATP	Dideoxynucleotide adenosine triphosphate
ddCTP	Dideoxynucleotide cytosine triphosphate
ddGTP	Dideoxynucleotide guanine triphosphate
DDM	Disc diffusion method
DDNTP	Dideoxynucleotide triphosphate
DDST	Double-disc synergy test

LIST OF ABBREVIATIONS (Cont...)

Abb.	Meaning
ddTTP	.Dideoxynucleotide thiamine triphosphate
	Dhamam, Saudi Arabia
DMSO	Dimethyl sulfoxide
DNA	. Deoxyribonuclic acid
DSDT	Double Synergy Differential Test
DTDT	Direct Three-dimensional test
E- Test	Epsilometer test
E. aerogenes	Enterobacter aerogenes
	Extended spectrum AmpC
ESBLs	Extended spectrum β -lactamase
EUCAST	European committee on antimicrobial susceptibility testing
FOX	- v
GES	Guyana ESBLs
hrs	Hours
IEF	Isoelectric focusing
	Inhibitor-resistant TEM
ITDT	Indirect Three-dimensional test
K.Oxytoca	Klebsiella Oxytoca
LAT	Latamoxef
LCR	.Ligase chain reaction
M. morganii	Morganella morganii
M3D	Modified three dimensional test
MBL	Metallo beta lactamase
MDDST	Modified double-disc synergy test
	Multi drug resistance organisms
	Mueller-Hinton agar
MIC	Minimal inhibitory cocentration
MOX	-
ND	Non determinable
P. aeruginosa	Pseudomonas aeruginosa

P. mirabilis Proteus mirabilis

LIST OF ABBREVIATIONS (Cont...)

Abb.	Meaning
PCDDT	Phenotypic confirmatory disc diffusion test
PCR RFLP	PCR restriction fragment length
	polymorphism analysis
PCR	Polymerase chain reaction
PCR-SSCP	.PCR-single-strand conformation
	polymorphism
PER	Pseudomonas extended resistance
PI	.Isoelectric point
S. marcescens	Serratia marcescens
S. pneumonia	Streptcocci pneumonia
S.enterica	Serratia enterica
SFO	Serratia fonticola
SHV	Sulfhydryl variable
spp	Species
TDT	Three-dimensional test
TEM	Temoniera
TLA	Tlahuicas (Indian tribe)
Tris-EDTA	Tris ethylene diamine tetra acetic acid
TZP	Tazopactam
U.K	
U.V. light	. Ultra violet light
UTI	.Urinary tract infection
VEB	Vietnam extended-spectrum β -lactamase

LIST OF TABLES

Table No.	Title	Page No.
Table (1):	Different extended-spectrum β-lactar families	
Table (2):	Characteristics of TEM-type β-lactan	nases 11
Table (3):	Characteristics of SHV-type β-lactam	ases 12
Table (4):	Characteristics of CTX-M-type ESBL	s 13
Table (5):	Characteristics of OXA-type ESBLs	14
Table (6):	Characteristics of novel, unrelated E	SBLs 15
Table (7):	Tests used in molecular detection of ES	SBLs 41
Table (8):	Classification of resistant types of Am	pC 52
Table (9):	Contact precautions for patients infect colonized by multi-drug rest Enterobacteriaceae organisms recommended by the Center for Dist Control and Prevention	istant as seases
Table (10):	Comparison between difficephalosporins resistance as a screen for ESBL detection	ening
Table (11):	Comparison between DDST and E-te ESBL detection	
Table (12):	Comparison between difficephalosporins used in DDST in relate E-test positive isolates	ion to
Table (13):	Comparison between MDDST and I for ESBL detection.	
Table (14):	Diagnostic performance of synergy compared with E-test for detection ESBL	on of

LIST OF TABLES (Cont...)

Table No.	Title	Page No.
Table (15):	Comparison between Cefoxitin screetest and M3D test for AmpC detection	•
Table (16):	Comparison between MDDST and E when M3D test is positive	
Table (17):	Comparison between DDST and E-te MDDST when M3D test is positive	
Table (18):	Comparison between MDDST and E when M3D test is negative	
Table (19):	Comparison between DDST and E-te MDDST when M3D test is negative	

LIST OF FIGURES

Fig. No.	Title	Page	No.
		- ~	
Figure (1):	Appearance of colonies on chromID		10
Figure (2):	agar a. E. coli; b. K. pneumoniae, c. p Combined disc method with (CAZ),	alone	19
	and in combination with CA (CAZ/CA		
	(CTX), alone and in combination with		
Figure (3):	(CTX/CA) The evidence of ESBL performed with		22
riguic (o).	confirmed by synergy between CA		
	AMC, synergy (key hole apperance) be		
	CTX and AMC		23
Figure (4):	Direct three-dimensional test of E. coli		
	234 isolate The three-dimen		
	inoculation resulted in minor distortion indicated antibiotic inactivation		25
Figure (5):	Indirect three-dimensional tes		20
g (0)	investigate <i>K.pneumoniae</i> that p		
	(MIR-1).		
Figure (6):	A broth microdilution susceptibility	_	
	containing 98 reagent wells a		
Figure (7):	disposable tray inoculator E_test, Clear cut ESBL positive, A re		
rigure (7):	'phantom' inhibition zone below cefepir		
	indicative of ESBL.		30
Figure (8):	Dye terminator cycle sequencing of DN	A	40
Figure (9):	Regulation of ampC in Enterobacteric		
Figure (10):	CAM assay. AmpC-positive ex		
Eigen (11).	produce a zone of growth around well		
Figure (11):	AmpC disc test with the upper Tris/ disc inoculated with the test isolat		
	placed adjacent to a FOX disc on a la		
	cefoxitin-susceptible E. coli		
Figure (12):	Three-Dimentional Extract Test (TD		

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page	No.
Figure (13):	M3D assay. AmpC-positive extracts	distort	
	the zone around the cefoxitin disc		61
Figure (14):	Cloxacillin-Based Double Disc Sy	nergy	
	Test		63
Figure (15):	E-Test. Cefotetan / cefotetan	with	
	cloxacillin		64
Figure (16):	Results of Cefoxitin-Boronic Acid Me	${ m thod}$	65
Figure (17):	Inhibitor-Based Test		66
Figure (18):	Detection of AmpC β-lactamases	using	
	CIAT		68
Figure (19):	Cefoxitin-Cefotaxime Antagonism Te	st	69
Figure (20):	MDDST showing synergy between	FEP/	
	CAZ and TZP		73
Figure (21):	MAST ID D69C disc test, A positive	${\bf result}$	
	obtained from AmpC confirmatory te	sting	77
Figure (22):	Representative results using the DSI		79
Figure (23):	Specimen results with the Cica	•	
	Strip		
Figure (24):	Algorithm for scoring the Cica-β-Test		81
Figure (25):	DDST at a distances of 20 mm cer		
	centre		104
Figure (26):	(A) DDST at a distances of 20 mm sh	_	
	No synergy also MDDST showing	_	
	synergy between FEP/ TZP at di		
T' (07)	20mm centre to centre.		
Figure (27):	MDDST showing synergy between		
E' (90)	TZP at distance 20mm centre to cent		106
Figure (28):	MDDST showing no synergy between		107
E' (00)	TZP at distance 20mm centre to cent		107
Figure (29):	TZ=4, TZL= 0.094 so TZ/TZL= 43		
	ratio> 8 and a rounded 'pha inhibition zone below TZ end indica		
	ESBL positive.		

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page	No.
Figure (30):	ratio≥ 8 indicates a clear cut	ESBL	100
Figure (31):	positive. TZ=0.5, TZL=0.125 so TZ/TZL=4 ratio< 8 indicates aclear cut	the ESBL	
Figure (32):	negativeIsolate A and B showing clear distor zone of inhibition of FOX indicating	tion of	
Figure (33):	zone of inhibition of FOX indi	tion of icating	
Figure (34):	absence of AmpC production Results of different cephlos resistance as a screening for detection in all isolates	porins ESBL	
Figure (35):	Results of different cephlosporins DDST among all positive ESBL isola E-test	using ites by	
Figure (36):	Diagnostic performance of the compared to MDDST.	DDST	
Figure (37):	-	Kappa	110
	two groups		121

INTRODUCTION

ncreasing prevalence of multidrug-resistant Gramnegative bacteria has continuously been reported over the past years, in particular *Enterobacteriaceae* producing extended spectrum β-lactamases (ESBLs). ESBLs have the ability to hydrolyse penicillins, first- second- and third-generation cephalosporins and aztreonam (but not cephamycins or carbapenems), and their activity is decreased by inhibitors such as clavulanic acid. ESBL-producing organisms may be responsible for life-threatening infections, leading to increased morbidity, mortality and healthcare-associated costs challenge (*Polsfuss et al., 2012*).

Ambler class C β -lactamases (AmpCs) have gained importance since the late 1970s as one of the mediators of antimicrobial resistance in gram negative bacilli. These enzymes are cephalosporinases capable of hydrolyzing all β -lactams to some extent. AmpCs are two types, plasmid-mediated and chromosomal or inducible AmpC. Chromosomal AmpC enzymes are seen in organisms such as *Citrobacter freundii*, *Enterobacter cloaca*, *Morganella morganii*, *Hafnia alvei* and *Serratia marcescens* and are typically inducible by β -lactam antibiotics such as cefoxitin and imipenem but poorly induced by the third or fourth generation cephalosporins (*Akujobi et al.*, 2012).

The absence of new effective anti-gram-negative antibiotics makes infection control the most important counter measure against multidrug-resistant gram-negative pathogens. Infection control can prevent additional infections and the spread of resistant pathogens and thereby reduce the need to use antibiotics. Infection control is most effective when directed by rapid, accurate laboratory results (*Thomson*, 2010).

In recent years, the prevalence of infections with multidrug resistant Enterobacteriaceae has steadily increased. Entero-bacteriaceae producing AmpCs have become a major therapeutic challenge (*Polsfuss et al.*, 2011).

There are numerous reports in which *Klebsiella* pneumonae and Escherichia coli(E. coli) isolates have been found to produce both plasmid-mediated AmpC β-lactamases (PMABLs) and ESBLs (Song et al., 2006).

The inhibitor-based confirmatory test approach is most promising for isolates that do not co-produce an inhibitorresistant β-lactamase like AmpC. However, a high-level production of AmpC may prevent the detection of an ESBL. Moreover, in these organisms, clavulinic acid may act as an inducer of high-level AmpC production resulting in an increase in the resistance of the isolate to other screening drugs, producing a false-negative result in the ESBL detection test. Therefore, there is a need for alternative method that detects ESBL in Klebsiella spp. and E. coli isolates with high

sensitivity even though the isolates harbor plasmid AmpC (Khan et al., 2008).

Now, modified double disc synergy test (MDDST) can be used. Which differs from the original one in two respects: first is the use of cefepime (4th generation cephalosporins) as an indicator drug which is known to be a poor substrate for AmpC B-lactamases making this drug a more reliable agent for ESBL detection in the presence of an AmpC enzyme (Khan et al., 2008), second is the use of Tazopactam instead of clavulanic acid as the later may act as an inducer of high level AmpC producing a false negative result in the ESBL elective test while Tazopactam and sulbactam are much less likely to induce AmpCs (Pitout et al., 2003).