

Effect of Chronic Liver Disease on Prognosis of Type II Diabetes Mellitus And Effect of Type II Diabetes Mellitus on the Liver

Thesis

Submitted for Partial Fulfillment of MD in Tropical Medicine

<u>By</u>

Safaa Ragab Tawfic

M.B.B.CH. – Ain-Shams University

Supervised by

Professor\ Hassan Salah EL-Din Hamdy

Professor of Tropical Medicine Faculty of Medicine, Ain shams University

Doctor\ Runia Fouad El-Folly

Assistant Professor of Tropical Medicine Faculty of Medicine, Ain shams University

Doctor\ Maram Mohamed Maher Mahdy

Assistant Professor of Endocrinology department Faculty of Medicine, Ain Shams University

Doctor\ Ashraf Mohamed El-Baridy

Lecturer of Tropical Medicine Faculty of Medicine, Ain Shams University

> Ain Shams University Faculty of Medicine 2015

تأثير أمراض الكبد المزمنه على مرض السكر من النوع الثاني وتأثير مرض السكر من النوع الثاني على الكبد

رسالق

توطئة للحصول على درجة الدكتوراه في طب المناطق الحارة

مقدمه من الطبيب صفاء رجب توفيق

بكالوريوس الطب و الجراحة - كلية الطب -جامعة عين شمس

<u>تحت إشراف</u> الأستاذ الدكتور/ حسن صلاح الدين حمدي

أستاذ طب المناطق الحارة

كلية الطب - جامعة عين شمس

الدكتور/ رنيا فؤاد الفولى

أستاذ مساعد طب المناطق الحارة

كلية الطب - جامعة عين شمس

الدكتور/ مرام محمد ماهر مهدى

أستاذ مساعد بقسم الغدد الصماء

كلية الطب - جامعة عين شمس

الدكتور/ اشرف محمد البريدي

مدرس طب المناطق الحارة كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٥

Acknowledgment

First and foremost, I feel always deeply indebted to Allah, The Most Gracious and the Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Hassan Salah EL-Din Hamdy,** Professor of Tropical Medicine for his keen guidance, for his kind care and valuable advice.

I am also delighted to express my deepest gratitude and thanks to **Prof.** Runia Found El-Folly, Professor of Tropical Medicine for her continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my thanks to **Dr. Maram**Mohamed Maher Mahdy, Professor of Endocrinology department, for her kindness, supervision and cooperation in this work.

I wish to introduce my deep respect to **Dr. Ashraf Mohamed El-Baridy**, Lecturer of Tropical Medicine, for his help, active participation and guidance.

Last, but not least, I want to thank all my family and my husband that without their help this work could not have been completed.

Safaa Ragab 2015

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the work	4
Review of Literature	
I. Chronic liver disease	5
II. Diabetes Mellitus	26
III. Relationship between chronic liver diabetes	
Patients and methods	114
Results	123
Discussion	161
Summary	169
Conclusions	172
Recommendations	173
References	174
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (I):	Physical signs in cirrhosis	13
Table (II):	Laboratory findings in cirrhosis	15
Table (1):	Comparison between CLD&DM and DM regarding demographic and DM characteri the studied cases	stics of
Table (2):	Comparison between CLD&DM and DM regarding visual, neural & nephrocomplications	ological
Table (3):	Comparison between CLD&DM and DM regarding ALT (IU/L)	•
Table (4):	Comparison between CLD&DM and DM regardingAST(IU/L)	
Table (5):	Comparison between CLD&DM and DM regarding Albumin (gm/dL)	
Table (6):	Comparison between CLD&DM and DM regarding Total bilirubin (mg/dL)	
Table (7):	Comparison between CLD&DM and DM regarding INR	
Table (8):	Comparison CLD&DM and DM study regarding Creatinine (mg/dL)	
Table (9):	Comparison between CLD&DM and DM regarding Total cholesterol (mg/dL)	
Table (10):	Comparison between CLD&DM and DM regarding Triglycerides (mg/dL)	
Table (11):	Comparison between CLD&DM and DM regarding LDL (mg/dL)	•
Table (12):	Comparison between CLD&DM and DM regarding HDL (mg/dL)	•
Table (13):	Comparison between CLD&DM and DM regarding FBS (mg/dL)	

List of Tables (Cont.)

Table No.	Title	Page No.	
Table (14):	Comparison between CLD& regarding 2HPPBG (mg/dL)		140
Table (15):	Comparison between CLD& regarding HbA1C		142
Table (16):	Comparison between CLD&I regarding Fasting insulin (IU/	DM and DM groups	
Table (17):	Comparison between CLD& regarding HOMA-IR	DM and DM groups	
Table (18):	Comparison between CLD&I regarding demographic characteristics	OM and CLD groups	
Table (19):	Comparison between CLD&I regarding ALT (IU/L)	OM and CLD groups	
Table (20):	Comparison between CLD&I regarding AST (IU/L)	OM and CLD groups	
Table (21):	Comparison between CLD&I regarding Albumin (gm/d)	OM and CLD groups	
Table (22):	Comparison between CLD&I regarding Total bilirubin (mg.	OM and CLD groups	
Table (23):	Comparison between CLD&I regarding INR	OM and CLD groups	
Table (24):	Comparison between CLD&I regarding Creatinine (mg/dL)	OM and CLD groups	
Table (25):	Comparison between CLD&I regarding Total cholesterol (n	OM and CLD groups	
Table (26):	Comparison between CLD&I regarding Triglycerides (mg/c	OM and CLD groups	
Table (27):	Comparison between CLD&I regarding LDL (mg/d)	OM and CLD groups	
Table (28):	Comparison between CLD&I regarding HDL (mg/dL)	OM and CLD groups	

List of Figures

Fig. No.	Title	Page No.
Figure (I):	Macronodular cirrhosis & Micronodular cirrho	osis10
Figure (II):	Comparison between CLD & DM and DM regarding ALT	• •
Figure (1):	Comparison between CLD & DM and DM regarding AST	
Figure (2):	Comparison between CLD & DM and DM regarding FBS	
Figure (3):	Comparison between CLD & DM and DM regarding 2HPPBG	•
Figure (4):	Comparison between CLD & DM and DM regarding HbA1C	
Figure (5):	Comparison between CLD & DM and DM regarding Fastin insulin	
Figure (6):	Comparison between CLD & DM and DM regarding HOMA-IR	•
Figure (7):	Comparison between CLD & DM and CLD regarding ALT	•
Figure (8):	Comparison between CLD & DM and CLD regarding AST	•

List of Abbreviations

Abb.	Meaning
ADA	: American diabetes association
AHRQ	: Agency for Healthcare Research and Quality
BCAA	: Branched chain amino acids
BMI	: Body mass index
CAD	: Coronary artery disease
CANOE	: Canadian Normoglycemia Outcome and
	Evaluation
CDC	: Centers for Disease Control and Prevention
CTGF	: Connective tissue growth factor
DKA	: Diabetic ketoacidosis
DNA	: Deoxyribonucleic acid
DPP	: Diabetes Prevention Program
DPP-4	: Dipeptidyl peptidase 4
DREAM	: Diabetes Reduction Assessment with Ramipril
	and Rosiglitazone Medication
EASD	: European Association for the Study of Diabetes
ECM	: Extracellular matrix
eGFR	: Estimated glomerular filtration rate
EV	: Esophageal varices
FDA	: Food and Drug Administration
FFAs	: Free fatty acids
FPG	: Fasting plasma glucose
GE	: Gastro-esophageal
GLP-1	: Glucagon-like peptide-1
GLP-1	: Glucagonlike peptide-1 agonists
HbA1C	: Hemoglobin A1C
HBSAg	: Hepatitis B surface antigen
HCC	: Hepatocellular carcinoma
HCV	: Hepatitis C virus
HDL	: High density lipoprotein

HE : hepatic encephalopathy

HOMA-IR: Homeostasis model assessment of insulin

resistance

HPS : Hepatopulmonary syndrome

HRS : Hepatorenal syndromeHSCs : Hepatic stellate cells

HVPG: Hepatic venous pressure gradient

IFG : Impaired fasting glucose

Ig : Immunoglobulin

IGF-1 : Insulin-like growth factor 1IGT : Impaired glucose tolerance

IL-1 : Interleukin

IR : Insulin resistance KCs : Kupffer cells

LDL : Low density lipoprotein

LSECs : Liver sinusoidal endothelial cells **MELD** : Model for End-Stage Liver Disease **MODY** : Maturity onset diabetes of youth **NAFLD** : Nonalcoholic fatty liver disease **NASH** : Nonalcoholic steatohepatitis **OGTT** : Oral glucose tolerance test **PCOS** : Polycystic ovary syndrome **PDGF** : Platelet-derived growth factor

PH : Portal hypertension

PHG : Portal hypertensive gastropathy

ROS : Reactive oxygen specious

SAAG : Serum: ascites albumin gradient
SBP : Spontaneous bacterial peritonitis

SGIT-2 : Selective sodium-glucose transporter-2 inhibitors

SOCS : Suppressor of cytokine signaling
SVR : Sustained virological response

T2DM : Type 2 diabetes mellitusTGF : Transforming growth factorTNF- alfa : Tumer necrosis factor-alpha

TZD: Thiazolidinediones

INTRODUCTION

The spectrum of liver disease in patients with type II diabetes includes abnormal liver enzymes, nonalcoholic fatty liver disease, cirrhosis, hepatocellular carcinoma, and acute liver failure (*Trombetta et al.*, 2005).

The presence of HCV infection in patients with DM increases the proportion of DM-related chronic complications. In fact, there are some reports showing that HCV infection is associated with an increased risk of developing diabetic nephropathy (*Pagano et al.*, 2005).

There is an unexplained association of diabetes with hepatitis C, the prevalence of diabetes in cirrhosis is 12.3-57%. So, patients with diabetes have a high prevalence of liver disease and patients with liver disease have a high prevalence of diabetes (*Trombetta et al.*, 2005).

Liver disease is an important cause of death in type II diabetes. Cirrhosis was the fourth leading cause of death and accounted for 4.4% of diabetes related deaths (*De Marco et al.*, 1999).

Introduction

Up to 96% of patients with cirrhosis may be glucose intolerant and 30% may be clinically diabetic (*Hickman and Macdonald*, 2007).

In Egypt, the prevalence of DM was 25.4% among HCV patients. Chronic hepatitis C patients are three times more likely to develop DM than HCV seronegative patients (*El-Zayadi et al.*, 1998).

Cheruvattath and Balan (2007), reported that the mechanisms by which diabetes worsens the clinical course of liver cirrhosis have not been clearly established. Firstly, DM accelerates liver fibrosis and inflammation giving rise to more severe liver failure. Secondly, DM may potentiate the incidence of bacterial infections in cirrhotic patients which are associated with increased mortality.

It is a matter for debate whether type 2 diabetes mellitus (DM), in the absence of other risk factors contributing to metabolic syndrome (obesity and hypertriglyceridemia), could be a risk factor for the development and progression of liver disease (*El-Serag et al.*, 2004). On the other hand, the diabetes which develops as a complication of cirrhosis is known as "hepatogenous diabetes" and is not recognized by the American

Introduction

Diabetes Association and the World Health Organization as a specific independent entity (*Holstein et al.*, 2002).

The pathophysiology of hepatogenous diabetes is complex and not precisely known. Insulin resistance in peripheral tissues (adipose and muscular tissue) plays a central role in glucose metabolism disturbance (*Hickman and Macdonald*, 2007).

AIM OF THE WORK

To assess the effect of chronic liver disease on type II diabetes mellitus and the effect of type II diabetes mellitus on chronic liver disease patients.

Chapter I

CHRONIC LIVER DISEASES

Definition

hronic liver diseases describe persistent inflammation of the liver for 6 months or more after initial exposure and/or initial detection of liver disease (*Dove and Wright*, 2004).

Causes of Chronic Liver disease

There are 4 main causes of chronic liver diseases:

I. Viral infection

1- Hepatitis C:

Hepatitis C virus (HCV) is among the leading causes of chronic liver disease worldwide (Chen and Morgan, 2006). Egypt has the highest prevalence of HCV infection of any country in the world, the situation is quite worse, the overall prevalence (percentage of people) positive for antibody to HCV was 14.7% (*El-Zanaty et al.*, 2009).

2- Hepatitis B:

Hepatitis B virus (**HBV**) infection is a global health problem, its patterns of transmission vary greatly throughout the world. Furthermore, the consequences

of chronic **HBV** infection represent a major burden for health care systems because a large proportion of these patients go on to develop cirrhosis and hepatocellular carcinoma (*El-Zayadi*, 2007).

The prevalence of **HBsAg** in Egypt is of intermediate endemicity (2–8%). Nearly 2-3 million Egyptians are chronic carriers of **HBV**. In Egypt **HBV** transmission is apparently a mixture of horizontal and perinatal transmission. However, the majority of HBV infection is acquired by the former route (*El-Zayadi*, 2007).

II. Auto immune liver disease

1- Auto immune (lupoid) hepatitis:

Commonly seen in females, histologically classified by appearance of chronic active hepatitis dominated by numerous plasma cells and swollen liver cell arranged in rosette-like forms, auto antibodies to smooth muscle antigens are often present (*Thomas et al.*, 2001).

2- Primary biliary cirrhosis:

Chronic disorders affect mainly middle-aged females. Liver biopsy shows bile duct obstruction, granulomas, ductular proliferation, fibrosis and eventual cirrhosis (*Thomas et al.*, 2001).