

New trends in diagnosis and management of gastroenteropancreatic neuroendocrinal tumors (GEP-NETs)

An Essay

Submitted for partial fulfillment of Master Degree in General Surgery

<u>By</u>

Islam Mohammad Mohammad Hegazy

(M.B.B.Ch)
Ain Shams University

Under Supervision of

Prof. Awad Hassan Alkayal M.D.,

Professor of General Surgery Faculty of Medicine-Ain Shams University

Abdelkarem Zaid M.D.,

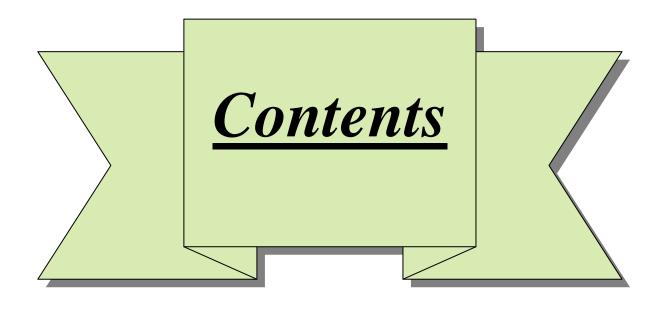
Fellow of General Surgery
El-Demerdash hospital
Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain Shams University 2012

سورة البقرة الآية: ٣٢

Acknowledgements

First, thanks are all directed to ALLAH for helping me to accomplish this research, and for providing me with such very encouraging and supportive supervisors.


I would like to express my deepest gratitude to Prof. Dr Awad Hassan Alkayal, Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his great support and continuous encouragement throughout the whole work under his guidance and supervision.

My deepest appreciation and grateful thanks are due to Dr. Abdelkarem Zaid Fellow of General Surgery, Faculty of Medicine, Ain Shams University, for his kind advices and his great effort throughout this work.

Also, I cannot fully express my deep gratitude and thanks to my wife and my daughter(Nourin), who I loved a lot and to whom I dedicate this work, and to all my family and I dedicate this work to the souls of my parents.

DR.Islam Mohammad Hegazy

Contents

Abbreviationsi
<u>List of figures</u> iv
<u>List of tables</u> viii
Aim of the workx
<u>Introduction</u> xi
<u>Chapter 1:</u> Development, embryology and cell biology of GEP-NETs. 1
Chapter 2: Pathophysiology of neuroendocrine tumors
Chapter 3: Clinical presentation of GEP-NETs A-carcinoid syndrome B- Neuroendocrine tumors in specific sites: 1-Luminal gastrointestinal NETs: 2-Pancreatic NETs:
Chapter 4: Diagnosis of neuroendocrine tumors
Chapter 5: Treatment of NETs A-Surgical treatment B-Medical treatment of NETs: C-Treatment of Neuroendocrine Liver Metastases
<u>References</u>
Summary and conclusion
<u>Arabic summary</u>

List of abbreviations

List of abbreviations

5FU 5flurouracil

5-HT 5-hydroxytryptophan,

5-HIAA 5-hydroxyindoleacetic acid AADC Aromatic acid decarboxylase

ACTH Adrenocorticothropine releasing hormone

AJCC American Joint Cancer Committee-

APC Adenomatous polyposis coli

BAO Basal acid out- put

bFGF Basic fibroblast growth factor

bHLH Basic helix-loop-helix CAG Chronic atrophic gastritis

CCK Cholecystokinin
CgA Chromogranin A
CgB Chromogranin B

CHD Carcinoid heart disease

CK Cytokeratin
CNC Carney complex

CRH Corticotrophic releasing hormone

CT Computed tomography DAT Dopamine transporter

DEB-TACE Drug-eluting beads transarterial chemoembolization

DMSA Dimercaptosuccinic acid

DNES Diffuse neuroendocrine system DOPA Di-hydroxy-phenylalanine

DSA Digital subtraction angiography

DTPA Diethylene triamine-pentaacetic acid

EC Enterochromaffin cells
ECL Enterochromaffin like cells

EGFR Epidermal growth factor receptor

ENETS Europian NeuroEndocrine Tumors Society

EUS Endoscopic ultrasonography
FDG Fluor-2-deoxy-d-glucose
FNA Fine-needle aspiration
FSG Fasting serum gastrin

GEP-NETs Gastroentero-pancreatic neuroendocrine tumors

GH Growth hormone

GIP Gastric inhibitory peptide GLP Glucagon-like peptide

GRF Growth hormone releasing factor

GRP Gastrin-releasing peptide

List of abbreviations

HPF High power field HPT Hyperparathyroidism

IBS Inflammatory bowel syndrome

ICC Immunocytochemistry

IFN Interferon

IGF1 Insulin-like growth factor 1
IHC Immunohistochemistry
IOUS Intraoperative ultrasound
LAR Long-acting repeatable

LAT Large amino acid transporter system

LDCV Large dense-core vesicles

MANEC Mixed adenoneuroendocrine carcinomas MCT Medullary carcinoma of the thyroid

MDCT Multidetector CT

MDR-1 Multi-drug resistance gene 1

MEEC Mixed exocrine—endocrine carcinoma MEN I Multiple endocrine neoplasia type I

MIBG Metaiodobenzylguanidine
MRI Magnetic resonance imaging
mTOR Mammalian target of rapamycin
NECs Neuroendocrine carcinomas
NENs Neuroendocrine neoplasia
NETs Neuroendocrine tumors
NF-I Neurofibromatosis type I

NF-PNETs Nonfunctional Pancreatic NETs

NGN Neurogenin NKA Neurokinin A

NSE Neuron Specific Enolase

NSF N-ethylmaleimide-sensitive fusion protein PACAP Pituitary adenylate cyclase activating peptide

PAX Paired box gene

PDECs Poorly differentiated endocrine carcinomas

PDGF Platelet-derived growth factor PET Positron emission tomography

PP Pancreatic polypeptide PPIs Proton pump inhibitors

PRRT Peptide receptor radionuclide therapy PTEN Phosphatase and tensin homolog

PTH Parathyroid hormone

PTH-rP Parathyroid hormone related peptide

PUD Peptic ulcer disease PVA Polyvinyl alcohol

List of abbreviations

RFA Radiofrequency ablation SLMVs Synaptic-like microvesicles

SNAP-25 Synaptosome-associated protein

SNARE Synaptosomal-associated protein receptor SpDP Spleen-preserving distal pancreatectomy

SPECT Single photon emission computed tomography

SRS Somatostatin receptor scintigraphy

SSTRs Somatostatin receptors SSV Small synaptic-like vesicles

STZ Streptozotocin

TACE Transarterial chemoembolization
TAE Transarterial bland embolization

TCF T cell factor
TK Tyrosine kinase

TKIs Tyrosine kinase inhibitors

TLL Tumour-like lesions
TSC Tuberous sclerosis

t-SNAREs Target membranes synaptosomal-associated protein

receptor

u5-HIAA Urinary 5-hydroxyindoleacetic acid

UGI Upper gastrointestinal

UICC Union Internationale Contre le Cancer VAMP Vesicle-associated membrane protein

VCE Videocapsule endoscopy

VEGF Vascular endothelial growth factor

VHL von Hippel-Lindau syndrome
VIP Vasoactive intestinal polypeptide
VMAT Vesicular monoamine transporter

v-SNAREs Vesicle membrane synaptosomal-associated protein

receptor

WCE Wireless capsule endoscopy

WDET Well-differentiated endocrine tumour

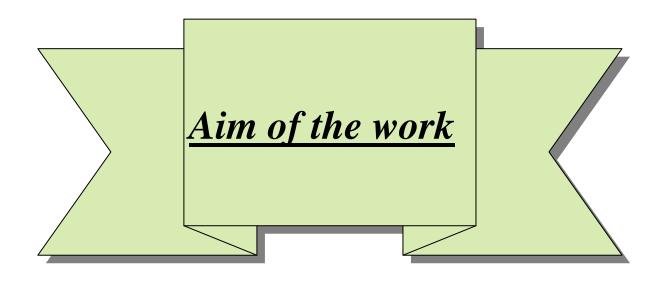
WDHA Watery Diarrhea, Hypokalemia, and Achlorhydria WDNEC Well differentiated neuroendocrine carcinoma

ZES Zollinger-Ellison Syndrome

Figure No.	<u>Title</u>	<u>Page</u>
Fig.1	Neuroendocrine cell differentiation in the gastrointestinal tract. Basal crypt stem (totipotential and pluripotential) cells give rise to a variety of mucosal cell types: Math1 expression directs cells to the secretory lineage and NGN3 to the neuroendocrine lineage. Specific hormone transcription is regulated by several transcription factors such as Pax4, Pax6, and BETA2.	2
<u>Fig.2:</u>	Schematic overview of enteroendocrine differentiation in the intestinal tract. Stem cells located in the crypts differentiate into all four cell types present in the intestinal epithelium. Math1 expression restricts cells to the secretory lineage and NGN3 restrict cells to the endocrine lineage, whereas the transcription of specific hormones is regulated by several late acting transcription factors such as Pax4, Pax6 and BETA2.	6
<u>Fig.3</u>	Calcium-dependent exocytosis. CgA is a key protein in the genesis of vesicles and regulates the biogenesis of dense-core secretory granules. Secretory products are stored in large dense-core vesicles (LDCV) and in small synaptic-like vesicles (SSV). Proteins associated with these vesicles (e.g., CgA or synaptophysin) have been utilized as biomarkers of neuroendocrine cells. Prohormones and proneuropeptides are stored and processed in the trans-Golgi network prior to packaging into secretory granules (LDCV) as bioactive peptides for regulated secretion.	11
Fig.4	Mechanism of vesicle docking and exocytosis at the plasma membrane. SNAREs have been identified both on the vesicle membrane (v-SNAREs) and on target membranes (t-SNAREs). The docking site is formed by the tight binding of one v-SNARE, synaptobrevin or vesicle associated membrane protein (VAMP), with two t-SNAREs, syntaxin and synaptosome-associated protein (SNAP-25), resulting in a stable trimeric core complex. At the completion of docking, vesicle content is released into the paracellular space.	12
Fig.5	Transformative events (putative) in the development of GEP-NETs. NETs develop in inherited/familial tumors of the stomach (gastric type II) and pancreas (pNETs) as a consequence of either a second hit or LOH somatic mutations, the most common event, perhaps due to environmental damage at a committed neuroendocrine precursor stage, lead to well-differentiated NETs (NET-G1). If damage occurs early in stem cell progress	14

_		
	(e.g., stem cell 1), poorly differentiated neuroendocrine carcinomas develop. If damage occurs at a later stage, for example to a pluripotent cell (stem cell 2), then a well-differentiated NEC (G2-NET) is the consequence. There is little evidence for evolution from a NET to a NEC in this schema.	
Fig.6:	Gastric NET (ECL cell) pathogenesis. The physiological regulation of acid secretion (top) involves luminal amino acid activation of G-cell gastrin secretion to provoke fundic ECL cell histamine release, which stimulates parietal cell acid secretion. Luminal acid increase counter-regulates gastrin via a somatostatin-modulated negative feedback loop. In Type I gastric tumors (left), diminution of parietal cell function (e.g., pernicious anemia or atrophic gastritis) increases luminal pH which stimulates gastrin secretion and sustained hypergastrinemia, culminating in ECL cell proliferation. This growth proceeds through phases of hyperplasia, dysplasia, and neoplasia. In Type II lesions (right), hypergastrinemia originates from autonomous secretion by a gastrinoma (G-cell neoplasia). In type III tumors (bottom), neoplastic transformation occurs independently of gastrin levels.	17
<u>Fig.7</u>	Well-differentiated neuroendocrine neoplasms of the stomach: (a) Multiple small polypoid tumours in the corpus region of the stomach associated with chronic atrophic gastritis of the oxyntic mucosa (type 1 gastric NET). (b) ECL cell hyperplasia in the oxyntic mucosa with microtumours. (c) ECL cell hyperplasia in patients with MEN-I. (d) Type 3 NEN of the stomach with infiltration of muscular wall.	20
Fig.8	Well-differentiated neuroendocrine tumour of the duodenum producing gastrin. Duodenal mucosa showing a small submucosal tumour.	21
<u>Fig.9</u> :	Gangliocytic paraganglioma showing triphasic cellular differentiation: Ganglion cells (center), endocrine cells (left) and Schwann cells (right).	22
Fig.(10):	(A) Gastric neuroendocrine tumor seen in the gastric fundus on endoscopy and (B) endoscopic ultrasound of the same lesion (<i>arrow</i>). Note that the lesion invades all layers of the gastric wall but does not erode through the adventitia.	81
Fig.(11):	immunocytochemistry ICC chromogranin-A+ve.	81
<u>Fig.(12)</u> :	A, B, C; Submucosal mass in the ileum, finally diagnosed as a small-intestinal carcinoid tumor in 3 different patients. D; Ischemic small intestinal segment from external	83

	compression by a mesenteric carcinoid tumor.	
<i>Fig.</i> (13):	Well-differentiated endocrine carcinoma of the duodenum	84
	in an 82-year-old man. A The CT image shows	
	enlargement of the ampulla of Vater. The density of the	
	wall is homogeneous, and the lumen of the duodenum is	
	dilated. B Arterial phase image: the thickened wall is	
	homogeneously and moderately enhanced. C The axial	
	and D coronal images show the lesion is further enhanced	
	in the venous phase. Intrahepatic bile duct and the	
	common bile duct are dilated.	
Fig.(14):	A-Transaxial CT image during i.v. contrast enhancement	85
	in the portal-venous inflow phase of several well-	
	vascularised midgut carcinoid liver metastases.	
	B -In the venous phase the metastases are no longer	
	discernible.	
<i>Fig.</i> (15)	Coronal T 2 -weighted MR Endocrine Pancreatic Tumor	87
	in the pancreatic head. The common bile duct can be	
	clearly delineated and is not compromised by the tumor.	
<i>Fig(16):</i>	Transaxial, sagittal, and coronal cross-sectional computed	92
	tomographic (CT) and nuclear images in hindgut NETs.	
	Top panel, Multi-phasic thin-section CT images with oral	
	contrast demonstrating metastatic nodal disease in the left	
	panel (transaxial), middle (sagittal), and right (coronal)	
	panels. Lower panel, 111In-diethylene triamine	
	pentaacetic acid octreotide scintigraphy with CT fusion	
	demonstrating somatostatin receptor 2 and/or 5 bearing	
F: (17)	tumor (liver and lymph nodes) in the same patient.	02
<i>Fig(17):</i>	Cross-sectional and nuclear imaging in midgut NETs.	93
	Left, Multiphasic thin-section CT with negative oral	
	contrast demonstrates primary ileal NETs with regional nodal disease and liver metastases. Right, [111In-DTPA0]	
	octreotide scintigraphy with CT fusion demonstrating	
	somatostatin receptors 2 and/or 5 bearing tumor in the	
	same patient.	
Fig.(18):	Metastasized carcinoid. 18F-DOPA PET scans (A),	100
1 15.(10).	octreotide scan (B) and 18F-DOPA PET-CT fusion image	100
	(C) of a female patient presenting with a metastasized	
	carcinoid. This patient illustrates the intra-individual	
	heterogeneity in the uptake of different tracers by tumor	
	metastases (arrows).	
Fig(19):	Patient in whom the 3 imaging modalities were in	106
<u> </u>	agreement with each other, finding large focus in liver.	
	Origin of primary tumor and liver metastases was	
	unknown. Ki67 index was 10%. From left to right are CT	
	images; 18F-FDG PET (top), 123I-MIBG scintigraphy	
	(middle), and SRS (bottom) images; and fused images.	
Fig (20):	Algorithm for the investigation of neuroendocrine	109
	tumours (NETs). ACP, Acid Phosphatase; BNP, brain	
	natriuretic peptide; CgA, chromogranin A; EUS,	
	endoscopic ultrasound; FDG, fluorodeoxyglucose; GI,	


	gastrointestinal; GPCA, gastric parietal cell autoantibody; HCG, human chorionic gonadotrophin; 5HIAA, 5-hydroxyindoleacetic acid; 5HTP, 5-hydroxytryptophan; MEN-1, multiple endocrine neoplasia 1; MIBG, metaiodobenzylguanidine; NF, neurofibromatosis; PET, positron emission tomography; PP, pancreatic polypeptide; PTH, parathyroid hormone; VHL, Von Hippel Lindau.	
<u>Fig.21</u>	Intraoperative findings with ultrasonography. The main pancreatic duct can be clearly detected by a polyethylene stent in a tumor located very close to the main pancreatic duct (<i>MPD</i>), and it is easy to determine the relationship between the tumor (<i>T</i>) and main pancreatic duct.	117
<u>Fig.22</u>	Several strings are placed on the pancreas parenchyma in front of the tumor, like a parachute. These strings are used for traction.	117
<u>Fig.23</u>	The surgeon's index finger compresses the tumor from behind. This compression and traction by parachute strings widens the space between the tumor and pancreatic parenchyma. Detachment and dividing are performed in the wide surgical field between the tumor and pancreatic parenchyma.	117
Fig.(24):	CT of bilobar hepatic metastases from a malignant NET in the (a) arterial phase and (b) venous phase. The characteristic enhancement of the tumor on arterial phase is apparent, as well as the relative darkening of the tumor on venous phase; the area of central necrosis is dark in both phases. Note the primary NET in the tail of the pancreas.	138
Fig (25):	Post-TACE MRI of bilobar hepatic metastases from the same patient in the arterial phase. Note the brightness of the aorta and lack of enhancement of the lesions compared to <u>Fig.(23</u>), indicating the ischemia produced by the embolization.	138
Fig(26):	 (A) Algorithm for the treatment of localised or metastasised NET. The treatment depends on localisation of the primary and the proliferation index (Ki-67). Light blue boxes indicate seldom used alternatives. (B) Algorithm for interventional treatment of neuroendocrine liver metastases. 	142

List of tables

<u>Table</u>	Title	Page
<u>No.</u>		
Table 1	Distribution and Actions of the Common Neuroendocrine Cells	9
	and Enteric Neuropeptides Involved in Neuroendocrine	
Table 2	Pathology.	25
Table 2	T, N and M categories in the ENETS TNM classification of pancreatic neuroendocrine tumors.	35
Table 3	Grading for pancreatic and other digestive neuroendocrine	35
<u> 1 abie 5</u>	tumours, according to ENETS/TNM.	33
Table 4	TNM classification for gastric endocrine tumors.	36
Table 5	TNM classification for endocrine tumors of the appendix.	36
Table 6	Disease staging of gastroenteropancreatic NETs.	37
Table 7	TNM classification for endocrine tumors of colon and rectum.	37
Table 8	TNM categories in the UICC/AJCC TNM classification of	39
	pancreatic neuroendocrine tumors.	
Table 9	Comparison of WHO 2010 classification for gastroentero-	41
	pancreatic neuroendocrine neoplasms with previous WHO	
	classifications.	
T 11 10	CILL 1. COED MET	40
<u>Table 10</u>	Clinical features of GEP-NETs.	42
Table 11	Common symptoms and signs of the main neuroendocrine	43
	tumor syndromes.	
		4.0
<u>Table 12</u>	Potential clinical symptoms based on carcinoid tumor location.	49
Table 13	Clinical presentation, syndrome, tumor type of ectopic	61
	pancreatic tumors, and the hormones produced.	
<u>Table 14</u>	The Frequency (%) of General Manifestations and of Different	64
	Types of Pancreatic Endocrine Tumors in Patients With	
	Multiple Endocrine Neoplasia Type-I.	
<u>Table 15</u>	Foods and Medications to Be Avoided During 5-HIAA	70
14010 15	Collection.	, ,
<u>Table 16</u>	Peptide markers specific to the tumour site.	71
Table 17	Conditions associated with hypergastrinemia.	73
Table 18	Common symptoms, signs diagnostic criteria of the main	74
	Neuroendocrine Tumor Syndromes.	

List of tables

<u>Table 19</u>	Sensitivities (%) of various imaging techniques.	88
Table 20	Medical and preoperative treatment for Neuroendocrine Tumors.	111

