

Synthesis, characterization and applications of some nanometal oxides

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Ph.D.) in Science "Chemistry"

Presented by

Mostafa Abdellah Sayed Ahmed

M.Sc. in chemistry (2013), Chemistry Department, Faculty of Science, Ain Shams University

Supervised by

Prof. Dr. Mohamed M.M. Abo Alv

Prof. of inorganic chemistry, Faculty of science, Ain Shams University

Dr. Abdelnaby Mohamed Salem

Lecturer of inorganic chemistry, Faculty of science, Ain Shams University

Dr. Ayman Ahmed Abdel Aziz

Assist. prof. of inorganic chemistry, Faculty of science, Ain Shams University

Dr. Amr Ali Mohamed Hassan

Lecturer of inorganic chemistry, Faculty of science, Ain Shams University

Synthesis, characterization and applications of some nanometal oxides

A Thesis Submitted by

Mostafa Abdellah Sayed Ahmed

For the Degree of Ph.D. in Chemistry

(Inorganic Chemistry)

To

Department of Chemistry

Faculty of Science

Ain Shams University

2017

Synthesis, characterization and applications of some nanometal oxides

Thesis Advisors	Thesis Approval
Prof. Dr. Mohamed M.M. Abo Aly	•••••
Prof. of inorganic chemistry, Faculty of science,	
Ain Shams University	
Dr. Ayman Ahmed Abdel Aziz	•••••
Assistant prof. of inorganic chemistry,	
Faculty of science, Ain Shams University	
Dr. Abdelnaby Mohamed Salem	•••••
Lecturer of inorganic chemistry, Faculty of science	·,
Ain Shams University	
Dr. Amr Ali Mohamed	•••••
Lecturer of inorganic chemistry, Faculty of science	2,
Ain Shams University	

Head of Chemistry department

Prof. Dr. Ibrahim Husseiny Ali Badr

Synthesis, characterization and applications of some nanometal oxides

Referee Committee	<u>I nesis Approvai</u>
Prof. Dr. Mohamed M.M. Abo Aly	•••••
Prof. of inorganic chemistry, Faculty of science,	
Ain Shams University	
Dr. Ayman Ahmed Abdel Aziz	•••••
Assistant prof. of inorganic chemistry,	
Faculty of science, Ain Shams University	
Prof. Dr. Badr Eldein Awad Elsayed	•••••
Prof. of inorganic and analytical chemistry,	
Faculty of science, El-Azhar University	
Prof. Dr. Ahmed Mahmoud Elsayed Daho	er
Prof. of inorganic chemistry, Authority of nuclear n	naterials

Head of Chemistry department

Prof. Dr. Ibrahim Al-Husseiny Badr

ACKNOWLEDGEMENT

First and foremost, thanks to **Allah** for giving me the opportunity and well-power to accomplish this work

I would like to express my sincere gratitude and indebted to **Prof. Dr. Mohamed Abo Aly**, Prof. of Inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University. He was always kind enough to suggest the topics of research and to follow up the progress of the work with keen interest, guidance and valuable criticism and whose efforts made this humble work as possible.

Also, I wish to express my sincere gratitude to Dr. Ayman Abdel Aziz, Dr. Abdelnaby Salem and Dr. Amr Ali, Lecturers of inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for their valuable advices and encouragement during this research work.

Finally, deep thanks and gratitude to my family, my friends, my colleagues and all peoples who help me to finish this work.

Mostafa Abdellah Sayed

Contents

Content	Page No.
Abbreviations	i
List of Figures	iv
List of Tables and Schemes	xii
Aim of the work	xiii
Abstract	XV
Chapter 1	
Introduction	
1.1. Nanotechnology and nanomaterials	1
1.2. Metal Oxide Nanoparticles	3
1.3. Synthesis of Nanoparticulated Metal Oxides	6
1.3.1. Wet Chemical precipitation	6
1.3.2. Sol-gel processing	6
1.3.3. Micro-emulsion technique	7
1.3.4. Solvothermal methods	7
1.3.5. Hydrothermal method	7
1.3.6. Pyrolysis process	8
1.3.7. Microwave-mediated technique	8
1.4. Applications of metal oxides nanoparticles	9
1.5. Nanometal oxides and Photocatalysis	10
1.5.1. Mechanism of Photocatalysis	11
1.6 Antimicrobial activity of metal oxide nanoparticles	14
1.7. Cerium oxide nanoparticles (Nanoceria)	16
1.7.1. Literature Survey on nanoceria	18
1.8. Ruthenium Oxide Nanoparticles (RuO2 NPs)	34
1.8.1. Literature Review on RuO ₂	36
Chapter 2	
Materials and Methods	
2.1. Materials	41
2.2. Characterization techniques	42

2.2.1. Fourier Transformed InfraRed (FTIR)	42
2.2.2. Raman Spectra	42
2.2.3. X-Ray Diffraction Studies (XRD)	42
2.2.4. Transmission Electron Microscopy (TEM)	43
2.2.5. Scanning Electron Microscopy (SEM)	44
2.2.6. Brunauer-Emmett-Teller (BET)	44
2.2.7. UV-Visible Spectroscopy	44
2.3. Antimicrobial screening	45
2.4. Experimental set up for Photocatalytic activity	1.0
assessment	46
2.5. Synthesis of CeO ₂ NPs using wet chemical	40
approach	48
2.6. Synthesis of CeO ₂ NPs using hydrothermal	
technique	49
2.7. Synthesis of CeO ₂ /CdSe nanocomposite	50
2.8. Synthesis of CeO ₂ /CdTe nanocomposite	51
2.9. Synthesis of RuO ₂ NPs via microwave-	52
mediated technique	34
2.10. Synthesis of CeO ₂ NPs via microwave-	53
mediated technique	33
2.11. Synthesis of CeO ₂ /RuO ₂ nanocomposite via	53
microwave-mediated technique	33
Chapter 3	
Results and Discussion	
3.1. Characterization of CeO ₂ NPs	62
3.1.1. Characterization of CeO ₂ NPs prepared by	64
wet chemical method	VŦ
3.1.1.1. FT-IR Spectroscopy	64
3.1.1.2. Raman Spectroscopy	66
3.1.1.3. Powder XRD studies	75
3.1.1.4. TEM studies	79
3.1.1.5. UV-Visible diffuse reflectance spectral	83
studies	03
3.2. Photocatalytic Performance studies	89

3.2.2. pH effect on photocatalytic degradation of Mb dye	93
3.2.3. Kinetic studies of methylene blue photodegradation	95
3.2.4. Photocatalytic degradation of CR dye	95
3.2.5. Kinetic Studies of CR photocatalytic	
degradation	96
3.2.6. Comparison of photocatalytic activity of synthesized samples	97
3.3. Antimicrobial studies of the synthesized CeO ₂ NPs	126
3.4. Characterization of CeO ₂ NPs prepared by	129
hydrothermal method	
3.4.1. FT-IR Spectroscopy	130
3.4.2. Raman Spectroscopy	137
3.4.3. Powder XRD studies	139
3.4.4. TEM studies	142
3.4.5. SEM studies	142
3.4.6. UV-Visible diffuse reflectance spectral studies	152
3.5. Photocatalytic Performance studies of	157
hydrothermally prepared CeO ₂ NPs	
3.5.1. Photocatalytic degradation of Mb dye	157
3.5.2. Kinetic Studies of Mb degradation	158
3.5.3. Photocatalytic degradation of CR dye	169
3.5.4. Kinetic Studies of CR degradation	169
3.5.5. Comparison of photocatalytic activity of	170
synthesized samples	
3.6. Characterization of CeO ₂ /CdSe and	182
CeO ₂ /CdTe nanocomposites	100
3.6.1. Raman Spectroscopy	182
3.6.2. Powder XRD studies	184
3.6.3. TEM studies	187
3.6.4. UV-Visible diffuse reflectance spectra	189
3.6.5. Surface area study	192
3.7. Adsorption removal of Mb dye by synthesized	194

nanocomosites	
3.8. Photocatalytic degradation of CR dye by synthesized nanocomosites	200
3.9. Photostability of methylene blue and Congo red dyes	208
3.10. Characterization of CeO ₂ , RuO ₂ and CeO ₂ /RuO ₂ NPs synthesized by microwave-mediated technique	210
3.10.1. Raman spectroscopy	210
3.10.2. Powder XRD studies	212
3.10.3. TEM studies	215
3.11. Antibacterial activity of CeO ₂ , RuO ₂ and CeO ₂ /RuO ₂ nanoparticles	217
Summary and Conclusion	220
References	224
الملخص العربي	Í

Abbreviations

Å	Angstrom
b	blank sample (dye + catalyst in absence of light)
BET	Brunauer-Emmett-Teller
° C	Centigrade Degree
СВ	Conduction Band
CR	Congo Red
DMSO	Dimethyl Sulfoxide
e ⁻	electron
ev	electron volt
FTIR	Fourier Transformed InfraRed
GHz	Gigahertz
$\mathbf{G}^{\scriptscriptstyle{+}}$	Gram positive
G ⁻	Gram negative
h	hour(s)
h ⁺	hole
НРС	Hydroxy Propyl Cellulose
H1	CeO ₂ nanoparticles prepared in the presence of 10% Tween 20 by hydrothermal technique

Н2	CeO ₂ nanoparticles prepared in the presence of 5% Tween 20 by hydrothermal technique
Н3	CeO ₂ nanoparticles prepared in the presence of 2.5% Tween 20 by hydrothermal technique
H4	CeO ₂ nanoparticles prepared in the presence of 10% Tween 80 by hydrothermal technique
Н5	CeO ₂ nanoparticles prepared in the presence of 5% Tween 80 by hydrothermal technique
Н6	CeO ₂ nanoparticles prepared in the presence of 2.5% Tween 80 by hydrothermal technique
KV	Kilovolt
M	Molarity
Mb	Methylene blue
min.	Minutes
mm	millimeter
mmol	millimoles
MOs	Metal Oxides
NCs	Nanocrystals
nm	Nanometer
No.	Number
NPs	Nanoparticles
ppt	Precipitate

SEM	Scanning Electron Microscopy
TEM	Transmission Electron Microscopy
T1	CeO ₂ nanoparticles prepared in the presence of 10% Tween 20 by wet chemical method
T2	CeO ₂ nanoparticles prepared in the presence of 5% Tween 20 by wet chemical method
Т3	CeO ₂ nanoparticles prepared in the presence of 2.5% Tween 20 by wet chemical method
T4	CeO ₂ nanoparticles prepared in the presence of 10% Tween 80 by wet chemical method
Т5	CeO ₂ nanoparticles prepared in the presence of 5% Tween 80 by wet chemical method
Т6	CeO ₂ nanoparticles prepared in the presence of 2.5% Tween 80 by wet chemical method
UV	Ultraviolet
VB	Valence Band
Vis	Visible
W	Watt
Wt/v	Weight per volume
XRD	X-Ray Diffraction

List of Figures

Figure		Page No.
Figure 1.1	Representative shapes and applications of metal oxide nanocrystals developed to date	5
Figure 1.2	Mechanism of photocatalysis	12
Figure 3.1	Molecular structure of Tween 20 and Tween 80 surfactants	63
Figure 3.2	FT-IR spectra of CeO ₂ NPs synthesized in the presence of 10% Tween 20 (T1)	67
Figure 3.3	FT-IR spectra of CeO ₂ NPs synthesized in the presence of 5% Tween 20 (T2)	68
Figure 3.4	FT-IR spectra of CeO ₂ NPs synthesized in the presence of 2.5% Tween 20 (T3)	69
Figure 3.5	FT-IR spectra of CeO ₂ NPs synthesized in the presence of 10% Tween 80 (T4)	70
Figure 3.6	FT-IR spectra of CeO ₂ NPs synthesized in the presence of 5% Tween 80 (T5)	71
Figure 3.7	FT-IR spectra of CeO ₂ NPs synthesized in the presence of 2.5% Tween 80 (T6)	72
Figure 3.8	Raman spectra of CeO ₂ NPs prepared in the presence of Tween 20	73
Figure 3.9	Raman spectra of CeO ₂ NPs prepared in the presence of Tween 80	74
Figure 3.10	XRD spectra of CeO ₂ NPs synthesized in the presence of Tween 20	77
Figure 3.11	XRD spectra of CeO ₂ NPs synthesized in the presence of Tween 80	78
Figure 3.12	TEM images of CeO ₂ NPs prepared in presence of different concentrations of Tween 20	81
Figure 3.13	TEM images of CeO ₂ NPs prepared in presence of different concentrations of Tween 80	82
Figure 3.14	UV-Visible absorption spectra of CeO ₂ NPs synthesized in presence of different concentrations of Tween 20 (a) and Tween 80 (b)	86

Figure 3.15	Tauc's Plot of CeO ₂ NPs prepared in presence of different concentrations of Tween 20	87
Figure 3.16	Tauc's Plot of CeO ₂ NPs prepared in presence of different concentrations of Tween 80	88
Figure 3.17	The chemical structure of Methylene blue and Congo red dyes	98
Figure 3.18	UV-Visible absorption spectra of Mb dye in presence of T1 sample under the effect of UV-irradiation (λ =254 nm) at different time intervals (5-120 min.) at pH=10.5	99
Figure 3.19	UV-Visible absorption spectra of Mb dye in presence of T2 sample under the effect of UV-irradiation (λ=254 nm) at different time intervals (5-120 min.) at pH=10.5	100
Figure 3.20	UV-Visible absorption spectra of Mb dye in presence of T3 sample under the effect of UV-irradiation (λ =254 nm) at different time intervals (5-120 min.) at pH=10.5	101
Figure 3.21	UV-Visible absorption spectra of Mb dye in presence of T4 sample under the effect of UV-irradiation (λ =254 nm) at different time intervals (5-120 min.) at pH=10.5	102
Figure 3.22	UV-Visible absorption spectra of Mb dye in presence of T5 sample under the effect of UV-irradiation (λ =254 nm) at different time intervals (5-120 min.) at pH=10.5	103
Figure 3.23	UV-Visible absorption spectra of Mb dye in presence of T6 sample under the effect of UV-irradiation (λ =254 nm) at different time intervals (5-120 min.) at pH=10.5	104
Figure 3.24	Degradation efficiency of Mb dye catalyzed by CeO ₂ NPs prepared in the presence of different concentrations of tween 20 at pH=10.5	105
Figure 3.25	UV-Visible absorption spectra of Mb dye in presence of T1 sample under the effect of UV-irradiation (λ =254 nm) at different time intervals (15-120 min.) at pH=7	106
Figure 3.26	UV-Visible absorption spectra of Mb dye in presence of T1 sample under the effect of UV-irradiation (λ =254 nm) at different time	107

	intervals (15-120 min.) at pH=4	
Figure 3.27	UV-Visible absorption spectra of Mb dye in presence of T4 sample under the effect of UV-irradiation (λ =254 nm) at different time intervals (5-120 min.) at pH=7	108
Figure 3.28	UV-Visible absorption spectra of Mb dye in presence of T4 sample under the effect of UV-irradiation (λ=254 nm) at different time intervals (5-120 min.) at pH=4	109
Figure 3.29	Degradation efficiency of Mb dye catalyzed by T1 sample at different pH values	110
Figure 3.30	Degradation efficiency of Mb dye catalyzed by T4 sample at different pH values	111
Figure 3.31	Plot of ln(C ₀ /C _t) versus time for Mb dye degradation catalyzed by CeO ₂ NPs prepared in presence of different concentrations of Tween 20 (a) and Tween 80 (b)	112
Figure 3.32	Photocatalytic degradation kinetics of Mb dye catalyzed by CeO ₂ NPs prepared in presence of different concentrations of Tween 20	113
Figure 3.33	Photocatalytic degradation kinetics of Mb dye catalyzed by CeO ₂ NPs prepared in presence of different concentrations of Tween 80	114
Figure 3.34	UV-Visible absorption spectra of CR dye in presence of T1 sample under the effect of UV-irradiation (λ=254 nm) at different time intervals (10-120 min.)	115
Figure 3.35	UV-Visible absorption spectra of CR dye in presence of T2 sample under the effect of UV-irradiation (λ=254 nm) at different time intervals (10-120 min.)	116
Figure 3.36	UV-Visible absorption spectra of CR dye in presence of T3 sample under the effect of UV-irradiation (λ=254 nm) at different time intervals (10-120 min.)	117
Figure 3.37	UV-Visible absorption spectra of CR dye in presence of T4 sample under the effect of UV-irradiation (λ=254 nm) at different time intervals (10-120 min.)	118
Figure 3.38	UV-Visible absorption spectra of CR dye in	119