Role of Respiratory Syncytial Virus as a Cause of Lower Respiratory Tract Infection Among Egyptian Children

Thesis Submitted for Partial Fulfillment of M.D. degree in Clinical Pathology

By

Emad Abdul-Wahab Mohammad Moustafa (M.B.B.Ch.) (M.Sc.)

Supervisors

Prof. Dr. Soheir Hilal

Professor of Clinical Pathology Faculty of Medicine - Cairo University

Prof. Dr. Mohammad Tarek Mansour

Professor of Virology and Immunology National Cancer Institute

Prof. Dr. Nada Nabil Nawar

Professor of Clinical Pathology Faculty of Medicine - Cairo University

Dr. Manal Adly

Lecturer of Clinical Pathology Faculty of Medicine - Cairo University

> Faculty of Medicine Cairo University 2010

Abstract

Respiratory syncytial virus (RSV) is one of the major respiratory tract viral pathogens throughout the world, causing acute lower respiratory infections among infants and young children. The present study was undertaken to compare between nested RT-PCR and viral culture methods for the detection of RSV infection in infants. This study included 107 pediatric patients admitted to Cairo University Children Hospitals with lower respiratory tract infections. RSV was isolated in 81 nasopharyngeal aspirates by viral cultures and identified in 88 samples by nested RT-PCR. In 7 samples RSV was identified by nested RT-PCR alone. In conclusion PCR appears to be more sensitive than viral cultures for detection of RSV in clinical samples.

Key words:

RSV – Viral culture – nested RT – PCR – Pneumonia.

إن فيروس الإندماج الخلوى التنفسي يعد من أهم أسباب عدوى الجهاز التنفسي السفلي في الأطفال و الرضع في جميع أنحاء العالم. تم إجراء الدراسة الحالية للمقارنة بين طريقتي "تفاعل البلمرة المتسلسل الانعكاسي المتداخل" و المزارع الفيروسية لتشخيص فيروس الإندماج الخلوى التنفسي في الأطفال. إشتملت هذه الدراسة على 107 طفلا مريضا لديهم أعراض إلتهاب الجهاز التنفسي السفلي تم إختيارهم في مستشفيات الأطفال بجامعة القاهرة. تم تشخيص الفيروسية وبطريقة "تفاعل البلمرة المتسلسل الانعكاسي المتداخل"، المنزوس في 81 عينة بواسطة كلا من المزارع الفيروسية وبطريقة "تفاعل البلمرة المتسلسل الانعكاسي المتداخل" فقط. نستخلص من هذا أن طريقة "تفاعل البلمرة المتسلسل الانعكاسي المتداخل" فقط. نستخلص من هذا أن المزية "تفاعل البلمرة المتسلسل الانعكاسي المتداخل" أكثر حساسية من المزارع الفيروسية في تشخيص فيروس الإندماج الخلوى التنفسي في الأطفال.

Acknowledgement

First of all, great thanks to Allah, for helping me in my life and in this work.

I wish to express my great gratitude and respect to Prof. Dr. *Soheir Hilal*, Professor of Clinical Pathology, Faculty of Medicine, Cairo University. She kindly guided my steps and was always providing me with valuable suggestions, advice experience and constant support throughout this study.

I would like to express my sincere gratitude and appreciation to Prof. Dr. *Tarek Mansour*, Professor of Virology and Immunology, National Cancer Institute, Cairo University, for his kind help, sincere advice and valuable suggestions.

Words fail to express my deep thanks and sincere gratitude to Prof. Dr. *Nada Nawar*, Professor of Clinical Pathology, Faculty of Medicine, Cairo University. She kindly guided my steps, and was always providing me with valuable suggestions, advises and constant support.

Many thanks to Dr. *Manal Adly*, Lecturer of Clinical Pathology, Faculty of Medicine, Cairo University, for her generous help and care.

I am deeply indebted to Prof. Dr. *Gehan Hussein*, professor of Pediatrics, Faculty of Medicine, Cairo University, for her valuable help and much assistance. She offered me whenever I needed.

Emad Abdul-Wahab Mohammad 2010

Contents

- List of Contents	i
- List of Tables	
- List of Figures	
- Abbreviations	vi
- Introduction and Aim of Work	viii
Chapter 1: Lower Respiratory Tract Infe	ctions
I- Bronchitis	
II- Bronchiolitis	
III- Pneumonia	
■ COMMUNITY-ACQUIRED PNEUMONIA	
Infectious Causes	
(A) Bacterial pneumonia	
(B) Fungal pneumonia	
(C) Viral pneumonia	
a) Causes of Viral Pneumonia and its Clinical Picture	
b) Pathogenesis of Viral Pneumonia	
c) Diagnosis of pneumonia	
Laboratory diagnosis	
GENERAL INVESTIGATIONS	
SPECIFIC MICROBIOLOGICAL INVESTIGATIONS	27
1) Bacterial pneumonia	
2) Viral pneumonia	
Radiological diagnosis	
Treatment of Pneumonia	
■ NOSOCOMIAL PNEUMONIA	
- Diagnosis	
- Bronchoscopy	
 PNEUMONIA IN IMMUNOCOMPROMISED HOST 	
Chapter 2: Respiratory Syncytial Virus	
(1) BASIC VIROLOGY	45
A) Classification and Structure	45
B) Antigenic Characteristics	53
C) Genetic variability of RSV	54
D) Growth Characteristics	55
E) Transmission	
(2) EPIDEMIOLOGY	56
A) Immunocompetent Hosts	58
B) Immunocompromised Hosts	60

<u>Contents</u> <u>ii</u>

C) Nosocomial Infections	63
(3) CLINICAL MANIFESTATIONS	
o Infants and Children	
o Young Adults	
o Elderly Adults	
o Immunocompromised Adults	66
(4) PATHOGENESIS	
A) Pathogenic factors determined by the virus	69
B) Link between RSV Infection and Asthma	75
(5) IMMUNITY	77
✓ Protective immunity	77
✓ Roles of Immunoglobulins	77
✓ Immune exclusion	78
✓ Neutralization	79
✓ Reinfection	79
(6) TREATMENT	81
■ Ribavirin	81
■ Immunoglobulin preparations	83
(7) PREVENTION	84
I- Infection control	84
II- Vaccination.	86
III- Passive immunization.	91
Chapter 3: Laboratory Diagnosis of Respirate	ory Syncytial
Virus	
Specimen collection	95
Cell Culture	
VIRUS ISOLATION IN TRADITIONAL CELL CULTURES	
- Types of cell lines	
- Specimen collection	
- Specimen processing	
- Inoculation of cell cultures	
- Confirmatory testing of virus cultures	
- Evaluation of the traditional cell culture	
- Advantages	
- Disadvantages	
VIRUS ISOLATION IN NEWER CELL CULTURE FORMATS	
- Shell Vial	
- Cluster (microwell) plates	

<u>Contents</u> <u>iii</u>

- Mixed cell line	108
- Cryopreserved cell cultures	109
- Centrifugation-enhanced inoculation	109
• Flourescence	110
• Serology	112
Molecular Methods	
- Nucleic acid amplification tests (NAATs)	
- PCR	
- PCR protocols	115
- Reverse transcriptase polymerase chain reaction	117
- Nested Polymerase Chain Reaction	117
- Steps of the Nested PCR	118
- Advantages of nested PCR	119
- Real Time PCR	119
- Muliplex PCR	122
Patients and Methods	123
Results	130
Discussion	137
Summary	147
Conclusion and Recommendations	149
References	151
Arabic Summary	••••

<u>List of Tables</u> iv

List of Tables

Number	Title	Page
Table 1	Most common pathogens implicated in lower respiratory tract	3
	syndromes and their relative contributions	
Table 2	Common causes of Community-aquired pneumonia in otherwise	8
	healthy children.	
Table 3	Uncommon causes of Community-aquired pneumonia in otherwise	9
	healthy children.	
Table 4	Microbial causes of Community-aquired pneumonia in childhood,	13
	according to age.	
Table 5	Diagnostic studies for specific agents of lower respiratory tract	31
	infections.	
Table 6	RSV-encoded proteins and their characteristics.	49
Table 7	Clinical manifestations of RSV infections in frail elderly persons.	66
Table 8	Detection of viruses in nasopharyngeal aspirate and nasal swab	96
	specimens compared with total viral findings by either method.	
Table 9	Age of patients (months). Values are expressed as number and	130
	percentage	
Table 10	Frequency of RSV Positive results in different age groups of patients	131
Table 11	Sex of patients and incidence of RSV positivity	132
Table 12	Symptoms and signs of patients. Values are expressed as number and	132
	percent.	
Table 13	Clinical diagnosis of patients. Values are expressed as number and	133
	percent.	
Table 14	Results of PCR in comparison to clinical diagnosis of patients.	134
Table 15	Prevalence of RSV subtypes (according toPCR results). Values are	134
	expressed as number and percent.	
Table 16	Results of RSV diagnostic testing for patients with Culture and PCR	135
	methods.	
Table 17	Sensitivity and specificity of PCR for RSV	135

List of Figures

List of Figures

Number	Title	Page
Figure 1	Radiograph of the thorax of a patient with RSV bronchiolitis.	35
Figure 2	Negative stain electron micrograph of respiratory syncytial virus.	43
Figure 3	RSV virion, RNA genome, and encoded proteins.	47
Figure 4	The RSV genome depicting the location of the reading frames.	48
Figure 5	RSV RNA genome.	48
Figure 6	A schematic diagram of the RSV virion.	50
Figure 7	Structure of Respiratory Syncytial Virus and Parainfluenza Virus.	51
Figure 8	Variable and conserved domains of the G protein.	54
Figure 9	Contributions of host and viral factors to RSV pathogenesis.	68
Figure 10	RSV-infected respiratory epithelial cells.	69
Figure 11	Epithelial cell as the target of RSV.	76
Figure 12	Potential mechanisms of protection against viral infection of the respiratory tract mucosa.	78
Figure 13	Structural formula of ribavirin.	82
Figure 14	How to take a nasopharyngeal swab.	97
Figure 15	Cell culture bottles.	99
Figure 16	Cell culture medium.	101
Figure 17	Reading a tissue culture tube on inverted microscope.	102
Figure 18	Positive hemadsorption result in parainfluenza virus-infected cells.	103
Figure 19	Cell cultures in shell vials.	106
Figure 20	Different microwell plates "cluster plates"	107
Figure 21	Two-step sandwich "indirect" fluorescent-antibody assay.	111
Figure 22	Cycles of polymerase chain reaction.	116
Figure 23	Steps of the Nested PCR.	118
Figure 24	TaqMan Method.	120
Figure 25	SYBR Green Method.	120
Figure 26	Different Real time methods.	121
Figure 27	DeLee Suction catheter with mucous trap.	124
Figure 28	Cell culture flasks.	126
Figure 29	Microfilters.	127
Figure 30	Percentage of age groups.	131
Figure 31	Clinical diagnosis of patients.	133
Figure 32	RSV typing by Reverse transcription	136

Abbreviations vi

Abbreviations

ABGs : Arterial Blood Gases

ALI : Acute lung injury

AOM : Acute otitis media.

ARDS : Acute respiratory distress syndrome.

ARI : Acute respiratory infections.

ARTI : Acute respiratory tract infection.

BAL : Bronchoalveolar lavage.

BMT : Bone marrow transplantation.

CAP : Community-acquired pneumonia.

COPD : Chronic obstructive pulmonary disease.

CoV : Coronavirus.

CPE : Viral cytopathic effect.

CT : Computerized tomography

CTL : Cytotoxic T cells.

CXRs : Chest X-rays.

DCs : Dendritic cells.

DFA : Direct fluorescent assay.

EIA : Enzyme immunoassay.

FOB: Fibreoptic bronchoscopy.

HAI : Hemagglutination inhibition test.

HAP : Hospital acquired pneumonia.

HCT : Haematopoietic cell transplantation.

HSV : Herpes simplex virus.

hMPV : Human Metapneumo virus.

ICU : Intensive care unit.

LRTI : Lower respiratory tract infection.

Abbreviations vii

LTCF : Long-term care facilities = Senior daycare.

MAbs : Monoclonal antibodies.

MRI : Magnetic resonance imaging.

NAATs : Nucleic acid amplification tests.

NASBA: Nucleic-acid-sequence-based amplification.

NPA : Nasopharyngeal aspirate.

NPS : Nasopharyngeal swab.

PCR : Polymerase Chain Reaction.

PIV : parainfluenza virus.

PSBs : Protected specimen brushes.

RSV : Respiratory Syncytial virus.

RT-PCR : Reverse transcriptase–polymerase chain reaction.

RVs : Respiratory viruses.

SARS : Severe acute respiratory syndrome

SOT : Solid organ transplantation.

SVC : Shell vial culture.

TCID50 : 50% tissue culture infective doses.

URTI : Upper respiratory tract infection.

VAP : Ventilator-associated pneumonia.

VZV : Varicella Zoster virus.

Introduction:

Acute respiratory infections are a major worldwide health problem because of associated high morbidity and mortality rates (*Avendano et al.*, 2003).

Human respiratory syncytial virus (RSV) is the most important viral agent causing serious pediatric respiratory disease worldwide. It is an enveloped, non segmented, negative-sense RNA virus classified in the subfamily *Pneumovirinae* of the family *Paramyxoviridae* (*Falsey et al.*, 2003).

RSV infection causes common-cold-like symptoms that progress to lower respiratory tract disease in 25 to 40% of infected infants and results in hospitalization for 0.1 to 1.0% of those infected. Almost everyone has been infected by RSV by 2 years of age. The immunity induced by RSV infection typically is incomplete, and reinfection is common, although subsequent infections are partially restricted and the disease severity is reduced (*Zhang et al.*, 2002).

Numerous studies have described a strong association between respiratory syncytial virus (RSV) infection in infancy and the development of recurrent wheezing and airway hyperresponsiveness (*Mejías et al.*, 2004).

In addition, a study has uncovered that RSV is a serious problem among the institutionalized elderly, causing severe lower respiratory tract disease and high rates of mortality (*Falsey and Walsh*, 2000).

More studies have shown that those at risk for developing serious disease following RSV infection also include the elderly, adults with underlying cardiopulmonary disease, and the severely immunocompromised. Compared with pneumonias caused by other respiratory viruses, RSV pneumonias are associated with the highest mortality rates in bone marrow transplant recipients and leukemia patients (*van Elden et al.*, 2003).

Reinfections due to RSV occur throughout life, reflecting incomplete immunity to the virus (*Maitreyi et al.*, 2003).

For appropriate treatment of RSV infection, it is crucial to have an accurate and timely diagnostic method for detection of the virus. A number of techniques are available for detection and identification of RSV, including cell culture, enzyme immunoassay (EIA), immunofluorescence (IF), and conventional reverse transcription (RT)-PCR (*Falsey et al, 2002*).

The effect of viral diagnostics on hospital length of stay and treatment costs has been assessed in single studies of adult and pediatric populations (*Barenfanger et al.*, 2000). Likewise, data regarding the effects of viral diagnostics on antibiotic prescribing practices for hospitalized children are limited (*Noyola and Demmler*, 2000 and *Byington et al.*, 2002).

Aim of the work:

- Detection of pneumonia cases caused by Respiratory Syncytial Virus.
- To compare between nested RT-PCR method and viral culture method for diagnosis of Respiratory Syncytial Virus infection in children and Infants.

(Chapter 1) Lower Respiratory Tract Infections

(Chapter 1) Lower Respiratory Tract Infections

INTRODUCTION

Paediatric respiratory disease remains an important cause of morbidity in both the developing and the developed world. In the UK respiratory illness is the most common reason parents cite for taking their children to see the general practitioner, and for attendance to the emergency department with a paediatric medical problem (*British Thoracic Society of Standards of Care Committee*, 2002).

Respiratory viral infection is a major cause of morbidity and mortality. Infancy, in particular, is a time of increased disease susceptibility and severity. Early-life viral infection causes acute illness and can be associated with the development of wheezing and asthma in later life (*Tregoning and Schwarze*, 2010).

Respiratory syncytial virus (RSV), influenza virus types A (FluA) and B (FluB), and parainfluenza viruses (PIVs) are the most commonly detected viruses and the leading causes of viral lower respiratory tract infections in children (*LeGoff et al.*, 2008).

The World Health Organization estimates that approximately 14 million people die each year from infections that are transmitted via the respiratory tract, most of which occur in childhood. Viral infections of the respiratory tract are particularly serious during infancy, and viral pneumonia is the most common cause of infantile hospitalization in the developed world (*Shay et al*, 1999).

Lower respiratory tract infections (LRTI) are among the most common infectious diseases of humans worldwide. In the United States alone, pneumonia and influenza rank as the sixth leading cause of death (*Pinner et al., 1996*). Changes in the characteristics of the population as it ages and the swelling numbers of patients with immunocompromising conditions have increased the number of individuals at risk. An expanded variety of emerging pathogens likewise provides challenges for the microbiology laboratory. Overtreatment of acute uncomplicated bronchitis, which is largely due to viruses, has led to unparalleled levels of multidrug resistance among invasive pathogens such as *Streptococcous pneumoniae*. Practice guidelines for a rational approach to the evaluation and treatment of patients with acute bronchitis have recently been published in an effort to decrease the overuse of antibiotics and as an attempt to prevent further increases in rates of resistance (*Gonzales et al., 2001*).

(I) Bronchitis

Bronchitis refers to nonspecific bronchial inflammation and is associated with a number of childhood conditions. *Acute bronchitis* is a syndrome, usually viral in origin, with cough as a prominent feature. Even though acute bronchitis is clearly one of the most common diagnoses made in adult clinical practice, a precise definition does not exist. A cough that lasts 1 to 3 weeks, with or without sputum production, and that is associated with upper respiratory tract and constitutional symptoms is the typical presentation. Symptoms result from inflammation and hyperresponsiveness of the bronchial tree (*Carroll*, 2002).