

AIN SHAMS UNIVERSTIY FACULTY OF ENGNEERING

USING OF PRECAST RC IN SILO DAMS

BY ENG. TAREK ABD EL RADI MAHMOUD HUSSIEN B.Sc IN CIVIL ENGINEERING 1988 AIN SHAMS UNIVERSTIY

SUBMITTED IN PARTIAL FULFILMENT FOR THE REQUIRMENT OF THE DEGREE OF MASTER OF SCIENCE CIVIL ENGINEERING

SUPERVISED BY

PROF. DR GAMAL SADIK ABAID PROFESSOR OF IRRIGATION DESIGN

PROF. DR. ALI ABD EL FATAH ALI AHMED PROFESSOR OF SOIL MECHANICS

PROF.DR. NAGI ALI ALI HASSAN PROFESSOR OF IRRIGATION AND DRAINAGE

AIN SHAMS UNIVERSTIY FACULTY OF ENGINEERING

USING OF PRECAST RC IN SILO DAMS

BY ENG. TAREK ABD EL RADI MAHMOUD HUSSIEN B.Sc IN CIVIL ENGINEERING 1988 AIN SHAMS UNIVERSTIY

SUBMITTED IN PARTIAL FULFILMENT FOR THE REQUIRMENT OF THE DEGREE OF MASTER OF SCIENCE CIVIL ENGINEERING

Thesis Approval

Examiners committee by Signature

Professor of Irrigation Design,

Faculty of Engineering, Ain Shams University.

PROF. DR ASHRAF ABD ELHAY SAID AHMED EL ASHAAL Director of the Research Institute of Construction, Ministry of Water Resources PROF. DR GAMAL SADIK ABAID Professor of Irrigation Design, Faculty of Engineering, Ain Shams University PROF.DR. NAGI ALI ALI HASSAN Professor of Irrigation and Drainage Faculty of Engineering, Ain Shams University PROF. DR. NAHLA M.ABD ELHAMID ABOULATTA`

ACKNOWLEDGEMENT

First of all thanks to god

I wish to express my deep thanks to prof. Dr. **DR GAMAL SADIK ABAID,** Professor of Irrigation Design, Irrigation and Hydraulic Department, Faculty of Engineering, Ain Shams University for kind supervision, helpful advices, valuable suggestions and construction criticism.

I'm especially and deeply indebted to Prof. **Dr. NAGI ALI HASSAN**, Professor of Irrigation for his helpful advices, data and valuable instructions.

My deep thanks are directed, as well, to Prof **DR. ALI ABD EL FATAH ALI AHMED** Professor of Soil Mechanics Department, Faculty of Engineering, Ain Shams University.

Thanks to **Dr. NAHLA M.ABD ELHAMID ABOULATTA**, Professor of Irrigation Design, Irrigation and Hydraulic Department, Faculty of Engineering, Ain Shams University for her helpful advices, data, and for her cooperation.

LIST OF CONTENTS

CHAPTER I: INTRODUCTION

I.1.	Problem definition	2
I.2.	Research objectives	2
I.3.	Proposed structural system	2
I.4.	Silo dams and massive dams	3
I.5.	Implementing cellular dams in Egypt	3
I.6.	Research Methodology	3
I.7.	Thesis layout	4

CHAPTER (II) : LITERATURE REVIEW

II.1.	Historical dams	12
II.2.	Aswan High Dam	18
II.3.	Construction materials of dams	19
II.4.	Dam failure	19
II.5.	Precast concrete in dams	19
II.6.	Design requirements of concrete in dams	20
II.7.	History of precast concrete dams implementation	20
II.8.	Forces on precast concrete dams	21
II.9.	Types of dams	28
II.10.	Dam classifications	30
II.11.	Factors governing the selection of particular type	31
II.12.	Selection of dam site	33
II.13.	Dam construction problems	35
II.14.	Scour protection below overflow spillways	38
II.15	Precast and precast-monolithic silo dams and	
	transition wing walls of abutments	41
II.16.	Comments	42

CHAPTER III: DESIGN CONSIDERATIONS FOR SILO DAM

III.1.	Silo (cellular) dams	45
III.2.	Soil-structure interaction of silo dams	45
III.3.	Design of silo dams	50
III.4.	Profiles of silo dams	55
III.5.	Method of construction	55
III.6.	Formulas for silo dam design (Yansen Formula)	57
III.7.	Applicability of implementing silo dams in Egypt	60
III.8.	Comments	67
СНАРТЕ	R IV: DEDUCING FORMULAS AND ESTABLISHING TABLES	
IV.1.	The forces acting on dams	69
IV.2.	Design of Silo	82
IV.3.	Deducing formulas to dimension the silo dam	85
IV.4.	Establishing tables to design silo dam	93
IV.5.	Comments	96
СНАРТЕ	R V:VERIFYING THE DESIGN OF THE PRE-CAST SILO DAM USING SAP 90	
V.1.	Reviewing the available models	99
V.2.	Implemented model (sap 90)	99
V.3.	Numerical simulation	103
V.4.	Analysis and results	103
V.5.	Comments	114
СНАРТЕ	R VI: ANALYSIS OF SETTLEMENT UNDER SILO DAMS	
VI.1.	Relation between settlement and stiffness of soil	116
VI.2.	Relation between foundation of the dam and settlement	118
VI.3.	Relation between settlement and lateral distance from dam	120
VI.4.	Relation between settlement under dam and affected depth	122
VI.5.	Relation between method of construction and settlement	129
VI.6.	Comments	134
СНАРТЕ	R VII: CONCLUSIONS AND RECOMMENDATIONS	
VII.1.	EXTRACTED CONCLUSIONS	142
VII.2.	RECOMMENDATIONS	143

LIST OF FIGURES

CHAPTER (II): LITERATURE REVIEW

FIG (II.a)	Hoover Dam	15
FIG(II.b)	Roman Cornalvo Dam	15
FIG (II.c)	Glen Canyon Dam	16
FIG (II.d)	Lake Vyrnwy Dam	16
FIG (II.e)	Ariel Photo to the Aswan High Dam	18
FIG (II .1)	Examples of precast concrete dams	23
FIG (II .2)	Examples of precast concrete dams	23
FIG (II .3)	Examples of precast concrete dams	24
FIG (II . 4)	Forces on precast concrete dams	24
FIG (II .5)	Examples of precast concrete dams	24
FIG (II . 6)	Forces on precast concrete dams	25
FIG (II .7)	Forces on precast concrete dams	26
FIG (II . 8)	Forces on precast concrete dams	26
FIG (II . 9)	Forces on precast concrete dams	27
FIG (II.10 a)	Gravity Dam	29
FIG (II.10b)	Arch Dam	29
FIG (II.10 c)	Buttress Dam	29
FIG (II.10 d)	Embankment Dam	29
FIG (II . 11)	Contours of a suitable Dam Site	34
FIG (II.12)	The Best Dam Site	34
FIG (II.13)	Horizontal apron	39
FIG (II.14)	Sloping apron	39
FIG (II.15)	Bucket	39
FIG (II.16)	Auxiliary Dam	39
FIG (II.17)	Appurtenances in a stilling basin	40
FIG (II.18)	Cellular Dam	41
CHAPTER III : I	DESIGN CONSIDERATIONS FOR SILO DAM	
FIG (III . 1)	Forces acting Cellular Dam	45
FIG (III.2)	Grouting Principle of sleeve pipes	51
FIG (III.3)	Layout of Suggested R.C Cellular Dam	52
FIG (III.4)	Stress on the element from Cellular Dam	53
FIG (III.5)	Block box, an element of sectional – monolithic structure	53
FIG (III . 6)	Different Shapes of Cellular Dam	55
FIG (III.7)	Elements of Silo Structures	57
FIG (III.8)	Applicability of implementing silo dams in Egypt	61
FIG (III.9)	Applicability of implementing silo dams in Egypt	62
FIG (III . 10)	Applicability of implementing silo dams in Egypt	63
FIG (III . 11)	Applicability of implementing silo dams in Egypt	64
FIG (III.12)	Applicability of implementing silo dams in Egypt	65
FIG (III 13)	Applicability of implementing sile dams in Fount	66

CHAPTER IV: DEDUCING FORMULAS AND ESTABLISHING TABLES

FIG (IV.1)	Water pressure on the upstream vertical side of the dam	70
FIG (IV.2)	Water pressure on the upstream slope side of the dam	7 1
FIG (IV . 3)	Uplift diagram when no drainage gallery is provided	73
FIG (IV . 4)	Uplift diagram when the drainage gallery is provided	74
FIG (IV . 5)	Hydrodynamic force on the dam	76
FIG (IV . 6)	Shape of dam with Sloping face	78
FIG (IV.7)	The pressure distribution according to wave pressure on the upstream of the dam	81
FIG (IV . 8)	Forces acting on the dam of triangle shape	84
FIG (IV.9)	Forces acting on the dam shape	86
FIG (IV.10)	Forces acting on the dam shape	87
FIG (IV.11)	Forces acting on the dam shape	89
FIG (IV.12)	The chosen shapes and the deduced formulas	92

CHAPTER V:VERIFYING THE DESIGN OF THE PRE-CAST SILO DAM BY IMPLEMENTING MODEL SAP 90

FIG (V .1)	Structural Idealization of Mat and Supporting Soil	102
FIG (V .2)	Rectangular plate element & the three degrees of freedom	102
FIG(V.3)	Internal forces of an element	102
FIG (V .4)	Dimension of 4 simulated cases	105
FIG(V.5)	Deformation shape ($H = 10m$)	106
FIG (V .6)	Stress shape $(H = 10m)$	107
FIG(V.7)	Deformation shape ($H = 20m$)	108
FIG (V . 8)	Stress shape $(H = 20m)$	109
FIG(V.9)	Deformation shape ($H = 30m$)	110
FIG (V.10)	Stress shape $(H = 30m)$	111
FIG (V.11)	Deformation shape ($H = 40m$)	112
FIG (V.12)	Stress shape $(H = 40m)$	113

CHAPTER VI: ANALYSIS OF SETTLEMENT UNDER SILO DAMS

FIG (VI .1)	Stiffness (E) kg/cm ²	117
FIG (VI .2)	Relation between settlement &width of dam	119
FIG (VI .3)	Relation between settlement &the ratio between lateral	121
	distance & height of dam	
FIG (VI.4)	Settlement at different depths under Toe of dam	123
FIG (VI .5)	Depth of silo under the dam 5m	125
FIG (VI .6)	Depth of silo under the dam 10m	126
FIG (VI .7)	Depth of silo under the dam 15m	127
FIG (VI.8)	Deformed shape of the dam under the affected force	128
FIG (VI.9)	Relation between settlement and steps of construction at	131
	depth 3m	
FIG (VI.10)	Relation between settlement and steps of construction at depth	132
	4m	
FIG (VI .11)	Relation between settlement and steps of construction at depth	133
	5m	
FIG (VI . 12)	Construction of the first 5m of the dam	135
FIG (VI.13)	Construction of the second 5m of the dam	136
FIG (VI.14)	The dam completed and most of settlement occurred	137
FIG (VI.15)	Stresses on dam	138
FIG (VI. 16)	Stresses on dam	139
FIG (VI.17)	Stresses diagram of soil and the body of the dam under	140
,	upstream water pressure and own weight of silo dam	

LIST OF TABLES

CHAPTER II: LITERATURE REVIEW

Table (II.a)	A list to some dams by volume of structure	17
CHAPTER III :	DESIGN CONSIDERATIONS FOR SILO DAM	
Table (III.1) Table (III.2)	Categories on the grain size of the soil Relation between materials and yansen's coefficient	47 59
CHAPTER IV: D	EDUCING FORMULAS AND ESTABLISHING TABLI	ES
Table (IV.1) Table (IV.2) Table (IV.3)	S	93 94 95
CHAPTER VI: AN	ALYSIS OF SETTLEMENT UNDER SILO DAMS	
Table (VI.1)	Typical values of permeability of soil	130

LIST SYMBOLS

$\mathbf{P}_{\mathbf{H}}$	Water pressure in the upstream side
$\mathbf{W_D}$	Weight of silo dam
В	Length of silo dam
H	Height of water in the upstream side
$\mathbf{I}_{\mathbf{D}}$	Coefficient of relative density
\sum_{\max}	Coefficient of porosity of extremely loose soils
\sum_{\min}	Coefficient of porosity of dense soils
3	Actual value of porosity coefficient
\mathbf{v}	velocity
$\mathbf{k_p}$	Coefficient of percolation
I	Hydraulic gradient
m	1 < m < 2 determines seepage flow
P	Pressure on soil layer downward
(p + dp)	Pressure on soil layer upward
dy	Thickness of soil layer
\mathbf{y}	Depth of soil layer
\mathbf{W}	c_0b_0 where c_0 and b_0 the length width of cell
u	$2(c_{o+}b_{o})$ parameter of cell
δ_1 wdy	Dead weight of cell
t	Forces of friction
Φ	Angle of internal friction of soil
\mathbf{F}	Coefficient of friction of soil with wall
${f E}$	2.72
K	Coefficient $0.16 < k < 0.35$
\mathbf{F}_1	Coefficient of friction with back fill
\mathbf{F}_2	Coefficient of friction of wall and back fill
S	Weight of walls with live load
Q	Shear force at bottomless of silo dam
$\mathbf{p}_{\mathbf{w}_s} \mathbf{p}_t$	Vertical forces acting on the wall
$\mathbf{H}_{\mathbf{s}}$	depth of layer for soil under foundation
$\delta_{_{_{0}}}$	Initial load
δ	Increase in load
c_c	Log c - c _o
$\mathbf{c}_{\mathbf{o}}$	Final void ratio
S_{24}	Final settlement after 24 hour of the application of the previous
	increment
e _o	Initial void ratio
e_1	Final void ratio`
$\mathbf{p_H}'$	Water pressure in the downstream side

 \mathbf{H}' Height of water in the downstream side Acceleration due to gravity g Acceleration due to earth quake $\alpha_{\rm v}$ fraction gravity adopted for vertical acceleration $\mathbf{k}_{\mathbf{v}}$ Hydronamic pressure pe Pressure coefficient c_{m} Angle that the upstream face of the dam makes with the horizontal θ The moment of the force about the base M_e $\mathbf{K_h}$ The friction of gravity adopted for horizontal acceleration The coefficient of active earth pressure Ks Submerged unit weight of silt material $\mathbf{W}_{\mathbf{s}}$ Weight of silt deposited h $h_{\rm w}$ Height of water from top of crest to bottom of trough in meters Fetch or straight length of water expanse in km F Maximum pressure intensity due to wave action $\mathbf{p}_{\mathbf{w}}$ Soil stiffness at node I $\mathbf{k}_{\mathbf{Fi}}$ Area of element surrounding node 1 $\mathbf{A_e}$ Coefficient of sub grade reaction for element under consideration \mathbf{k}_{Fe}

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION

This chapter is devoted to give an overview about the problem challenging the researcher. The objectives of the research are given, as well. The chapter also presents the proposed structural system (i.e. silo dam) so as an overview to massive dams together with silo dams and their implementation in Egypt. Also, the methodology followed by the researcher, to reach an optimum dimension to this system, is presented. Finally, an overview to the thesis layout is given.

The above is given, in this chapter under the following headlines:

- Problem definition
- Research objectives
- Proposed structural system
- Silo dam and massive dams
- implementing silo dams in Egypt
- Thesis layout

I.1. PROBLEM DEFINITION

Dams usually have big volumes of construction materials. This adds to the total cost of the dam. For example, some dams cost the nations a lot of currency at the time of their construction.

As engineers, it is always desired to achieve constructions within the economic range. For example, if these dams were constructed with another structural system, this would have, most probably, reduced the used construction material and consequently, the total cost.

I.2. RESEARCH OBJECTIVES

For the above reason, this research was initiated with the objectives of establishing formulas, to dimension dams according to the water depth of the channel so as the soil properties, and determining a structural system that might reduce the cost of the dam construction. The researcher was also determined to reach an optimum dimension of this structural system of the dam. This system is presented, as follows.

I.3. PROPOSED STRUCTURAL SYSTEM

The researcher proposed the silo dam to be the structural system of the dam. This type of dams consist of longitudinal and transverse walls of concrete or reinforced concrete that form cells that are filled with earth, rock, or some other ballast.

This is an economic structural system as its body consists of a mixture of concrete and the available soil at the construction site.

This issue should be taken into consideration during the design where during the design phase, the dimensions of the dam are determined.

I.4. SILO DAMS AND MASSIVE DAMS

Unlike massive dams, silo dams consist of longitudinal and transverse walls of concrete or reinforced concrete that form cells that are filled with earth, rock, or some other ballast. This is an economic structural system as its body consists of a mixture of concrete and the available soil at the construction site.

Massive dams are used for hydro-technical structures. They have complicated nature of loading. Water does not create large horizontal pressures along the water side of the structure but also it gives a considerable vertical uplift pressure which takes place as a result of filtration flow.

It is clear that both horizontal pressures and uplift forces define the main dimensions of massive gravity dams. The weight of dam has to satisfy the safety requirements against sliding. Also, it should be clear that water does not give static pressure forces, but also it gives dynamic forces that cause vibration of the structure as a result of high velocities of water passing through the structure.

I.5. IMPLEMENTING SILO DAMS IN EGYPT

It is to be noted that the idea of the silo dam was first implemented in Naga Hammadi Barrage and its lock. Voids were created within the body of the barrage, lock and pier. These voids were filled by sand. This reduced the concrete quantity.

In Egypt, silo dams could be implemented in flashflood paths to retain water in order to prevent hazards to roadways, properties and infra structures. Such danger affects the nation economy and people that construct settlements in the flood pathway. Alexandria, Sinai, Hurghada and Aswan are examples that faced such hazards.

At flashfloods locations, dams of embankment type were used to be constructed. These dams usually need repair due to the continuous body erosion from flood water attack. These repairing processes are very expensive. Another alternative was the implementation of gravity type which is also a very costly solution.

In case of flash floods, water treatment plant should be constructed to improve the water quality to use it in drinking, irrigation or as a coolant for power plants in deserts. Moreover, limited power could be generated by installing turbines and retaining water upstream the dam. This retained water should be raised by pumps into the turbines. Manholes could be created within the dam body. Also, gates could be placed to regulate the flow.

Silo dam could be placed between two mountains, on condition that the upstream side is wide enough to encompass a suitable (i.e. according to the flashflood water quantity that should be estimated, in the coming 30 years, by researchers) storage volume.

I.6. RESEARCH METHODOLOGY

The researcher designed a certain methodology to achieve the above objective. Primarily, literature, in the field of dams, was reviewed. Then the applicability of implementing silo dams in Egypt was investigated. Once this type was found to be applicable, economic dimensions to such dam could be further determined. Consequently, the forces exerted, on that type, were outlined and studied from which formulas were deduced. These formulas define the dimensions of the silo dam. The

formulas related the depth of the channel (i.e. which is usually equals the height of the dam) so as the specific density of the dam and the dimensions of the dam. Three tables were established from which dams dimensions could be deduced, knowing the specific density of the dam and water depth in the channel.

Finally, as a verification of these deduced formulas, SAP 90 was applied to 4 dams with different water heads (i.e. 10, 20, 30 and 40 m) and the stresses underneath them so as the settlement were obtained. Moreover; the settlement, soil stiffness, dimensions of foundation and affected depth were investigated in order to determine the influence of these aspects.

The results of SAP 90 were in good agreement with the deduced formulas and established tables. This indicated the possibility of implementing these formulas and tables in designing of PCRC silo dams.

I.7. THESIS LAYOUT

The above investigation phases are displayed in this thesis in chapter form. The thesis consists of $\underline{7}$ chapters. These chapters are as follows:

Regarding <u>Chapter I "Introduction"</u>, it presents the problem definition, research objectives, proposed structural system (silo dam), implementing silo dams in Egypt and thesis layout.

As for <u>Chapter II "Literature Review"</u>, it cites the literature of many topics (i.e. historical dams, Aswan High Dam, construction materials of dams, dam failure, precast concrete in dams, design for precast concrete dams, design requirements of concrete in dams, history of precast concrete dam's implementation, forces on precast concrete dams, types of dams, dam classifications, factors governing the selection of particular dam type, selection of dam site, problems in dam construction, scour protection below overflow spillways and precast together with precast – monolithic silo dams so as transition wing walls of abutments. Also, formulas, that could estimate the silo dam dimensions, were presented (i.e. Yansen formula). Finally, comments are given at the end of the chapter to reflect the researcher's opinion on the assembled literature.

<u>Chapter III " Design considerations for silo dam"</u>, presents the silo dam. The chapter displayed the properties, the applications, type of foundation and the way of construction so as the construction materials of such dams. The chapter also provides the soil-structure (i.e. silo dam) interaction so as the design of such structures. The design of silo dam is given together with the formulas for silo dam dimensioning (i.e. Yansen Formula). Also, the chapter outlines the cases where the silo dam is implemented in Egypt. Finally, comments are given at the end of this chapter to express the author's point of view and to reveal the possibility of implementing such dam in Egypt.

Regarding *Chapter IV "Deducing formulas and establishing tables"*, it presents the acting forces, on the dam body, together with the design of silo dam. It also presents the deduced formulas and the established tables that could be used in silo dam dimensioning. Finally, comments are given to outline the researcher's point of view on this phase.