GENOTOXIC EFFECT OF THE INSECTICIDE CHLORPYRIFOS AND THE ROLE OF LETTUCE LEAVE AS ANTIMUTAGEN IN MALE MICE

BY

AHMED MOHAMED MOHAMED DARWISH

B. Sc. Agric. Sc. (Genetics), Ain Shams University, 2003

A thesis submitted in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

GENOTOXIC EFFECT OF THE INSECTICIDE CHLORPYRIFOS AND THE ROLE OF LETTUCE LEAVE AS ANTIMUTAGEN IN MALE MICE

BY

AHMED MOHAMED MOHAMED DARWISH

B. Sc. Agric. Sc. (Genetics), Ain Shams University, 2003

This thes	is for M.Sc	. De	gree has be	en approv	ved b	y:	
Prof. Dr.	Hassan Z	aki A	Allam	••			
Prof. E	Emeritus of	Gene	etics, Facult	y of Agric	ultur	e, Elmenia	
Unive	rsity						
			Aziz Ibrahi alty of Agric			ams University	
Prof. Dr.	Aly Zain	Elab	idin Abdels	salam			
Prof.	Emeritus	of	Genetics,	Faculty	of	Agriculture,	Ain
Shams		Un	iversity				
Date of E	Examination	n:	4 / 4	/ 2009			

GENOTOXIC EFFECT OF THE INSECTICIDE CHLORPYRIFOS AND THE ROLE OF LETTUCE LEAVE AS ANTIMUTAGEN IN MALE MICE

AHMED MOHAMED MOHAMED DARWISH

B. Sc. Agric. Sc. (Genetics), Ain Shams University, 2003

Under the supervision of:

Prof. Dr. Aly Zain Elabidin Abdelsalam

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture Ain Shams University (Principal Supervisor)

Prof. Dr. Waffa Abdel-Naby Mohamed

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

Prof. Dr. Kamilia Badrakhan Abd El-Aziz

Prof. of Cytogenetics, Department of Cell Biology, National Research Center

السمية الوراثية لمبيد الكلوربيريفوس ودور ورق الخس كمضاد للطفور في ذكور الفئران

رساله مقدمه من

أحمد محمد درويش بكالوريوس علوم زراعية (وراثه), جامعة عين شمس, ٢٠٠٣

للحصول على

درجة الماجستير في العلوم الزراعية (وراثه)

قسم الوراثة كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرساله

السمية الوراثية لمبيد الكلوربيريفوس ودور ورق الخس كمضاد للطفور في ذكور الفئران

مقدمه من

أحمد محمد درویش بکالوریوس علوم زراعیة (وراثه), جامعة عین شمس , ۲۰۰۳

• 4
اللجنه:
أ.د. حسن زكي علام أستاذ الوراثة المتفرغ, كلية الزراعة, جامعة المنيا
أ.د. سمير عبد العزيز إبراهيم أستاذ الوراثة _، كلية الزراعة _، جامعة عين شمس
أ.د. علي زين العابدين عبد السلام أستاذ الوراثة المتفرغ, كلية الزراعة, جامعة عين شمس

تاريخ المناقشة: ٤ / ٤ / ٢٠٠٩

ه قد تمت مناقشة الرساله ه المه افقة عليها.

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالب : أحمد محمد محمد درويش

عنوان الرسالة: السمية الوراثية لمبيد الكلوربيريفوس ودور ورق الخس كمضاد للطفور في ذكور الفئران

اسم الدرجة : ماجستير في العلوم الزراعية (وراثه)

لجنة الاشراف:

i.. علي زين العابدين عبد السلام أستاذ الوراثه المتقرغ,قسم الوراثة, كلية الزراعه, جامعة عين شمس (المشرف الرئيسي)

> أ.د. وفاء عبد النبي محمد أستاذ الوراثه, قسم الوراثة, كلية الزراعه, جامعة عين شمس

> أ.د. كاميليا بدرخان عبد العزيز أستاذ الوراثة, قسم بيولوجيا الخلية, المركز القومي للبحوث

تارخ البحث ٥ / ٩ /٥٠٠٠

الدراسات العليا

أجيزت الرسالة بتاريخ / /۲۰۰۹ ختم الإجازة

موافقة مجلس الجامعة / ۲۰۰۹/

موافقة مجلس الكلية / / ٢٠٠٩

ACKNOLEDGMENT

At the first I thank Allah who gives us life that he gives us mind to think, hands to write, tongue to thank and the heart to love. Then I thank my parents be cause they are the cause of my existence in this life,

I wish to express my special thank to my great professor **Dr Aly Zain Elabidin** professor of genetic in agriculture faculty Ain shams university and dean of biotechnology faculty for his brilliant name in the scientific research especially in the field of biotechnology that it's honor for each student to record with him.

Also, I would like to express sincere gratitude to **Dr Kamilia Badrakhan** professor of genetic in cell biology in National Research center who helps us hard to build a great research that it is honor to record with her. She had the first kindness after Allah in this research.

Then I thank **Dr Aida Ibrahim El Makawy** professor in cell biology in National research center who was the unknown solider who exerts her best and had a little. She is the owner of this idea and the owner of the plant of this research.

I don't forget to ask mercy for **Dr Wafaa Mohamed** who I wish paradise for her. In addition to I don't forget to thank my beloved wife Abed El Rahman's mother

Finally I thank every one who helps me on purpose or not from colleagues or relatives thanks very much.

ABSTRACT

Ahmed Mohamed Darwish: Genotoxic Effect of the insecticide Chlorpyrifos and the role of Lettuce Leave as Antimutagen in Male Mice. Unpublished M. Sc. Dissertation, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2009.

Chlorpyrifos [O, O-diethyl-O-(3, 5, 6-trichloro-2-pyridyl)phosphorothioate] is one of the most widely used organophosphate insecticides. Previous studies proved that chlorpyrifos at different doses induced genotoxicity. Since, the residual levels of pesticides in Egyptian foods often higher than those found in developed countries, the aim of the present work is to evaluate the mutagenicity of the insecticide chlorpyrifos at the doses that equal to its maximum residue limit (MRL) in the leafy vegetables, its double and triple (0.5, 1 & 2 mg/kg body weight) in somatic and germ cells of male mice. In addition, to evaluate the role of lettuce leaves as antimutagen in reducing the genotoxic effect of chlorpyrifos tested doses when concurrently administrated to animals with the insecticide. The study of this effect is conducted on adult male laboratory mice at three levels: Bone marrow cells as model for mitotic chromosome, spermatocytes as a model for meiotic chromosomes and sperm count and morphology. The results of the present study indicated that the treatment of male mice with chlorpyrifos three doses by oral gavages for three month induced significant increase in the frequencies of total chromosomal aberrations in both somatic, and germ cells over than the control groups. Results of the sperm analysis indicated that chlorpyrifos induced significant decrease in the sperm count as compared to negative control. In addition, it induced significant increase in head and tail sperm abnormalities and the coiled tail is

considered the more obvious sperm abnormality induced by chlorpyrifos. Meanwhile, the present study indicated that administration of lettuce leaves at tested dose concurrently with chlorpyrifos different doses could not protect cells from damage.

Key word: Genotoxic, Mutation, Chlorpyrifos, Insecticides, Lettuce, Anti mutagen, Chromosomal aberration, Mice Male

LIST OF FIGURES

Fig. No.	Page
Fig (1): structure of chlorpyrifos	11
Fig (2): metaphase spread from bone marrow of untreared mouse showing normal spread.	40
Fig (3): metaphase spread from bone marrow of treared mouse showing (A) Break, (B)Gap, (C) Deletion.	41
Fig (4): metaphase spread from bone marrow of treared mouse showing centric fusion.	41
Fig (5): metaphase spread from bone marrow of treared mouse showing endomitosis.	42
Fig (6): metaphase spread from bone marrow of treared mouse showing centromeric attenuation.	42
Fig (7): metaphase spread from bone marrow of treared mouse showing polyploidy.	43
Fig (8): Metaphase spread from spermatocyte of untreared mouse showing normal spread.	43
Fig (9): metaphase spread from spermatocyte of treared mouse showing x-y univalent.	44

Fig (10): metaphase spread from spermatocyte of treared mouse showing autosomal univalent.	44
Fig (11): metaphase spread from spermatocyte of treared mouse showing hypoploidy.	45
Fig (12): metaphase spread from spermatocyte of treared mouse showing polyploidy.	45
Fig (13): frequencies of different chromosomal aberrations Induced by chlorpyrifos without and with lettuce Leaves in bone marrow cells.	49
Fig (14): mean values of chromosome aberrations in Spermatocytes of all experimental groups.	52
Fig (15): sperm morphology showing (a) normal sperm (b) without hock (c) banana head (d) amorpous head (e) small head and coild tail.	53
Fig (16): mean values of sperm count in all experimental groups.	58
Fig (17): frequencies of sperm shape abnormalities induced By chlorpyrifos without and with lettuce leaves In mice.	57

LIST OF TABLES

Table NO.		Page
Table (1): Physical	and Chemical Properties for chlorpyrifos	12
induced	lues of different chromosomal aberrations by chlorpyrifos with and without lettuce a bone marrow cells of male mice.	48
induced	lues of different chromosomal aberrations by chlorpyrifos without and with lettuce a spermatocytes of mice.	50
Table (4): Mean val	lues of sperm count of all experimental groups.	54
	ues of sperm abnormalities induced by ifos with and without lettuce leaves in ice.	56

CONTENTS

Lis	t of table	ii
Lis	st of figure	iii
I-	Introduction	1
II-	Review of Literature	4
	1- Insecticides	4
	Classes of agricultural insecticides	4
	2- Organophosphrus	6
	2-1- Structural diversity of organophosphrus	6
	2-2- Classification of organophosphorus	6
	2-3- Toxicity	7
	2-4- Organophosphorus pesticide residues in diet	9
	3- Chlorpyrifos	11
	3-1- Structure	11
	3-2- Classes	11
	3-3- Physical and chemical properties	12
	3-4- Mode of Action	12
	3-5- Application	13
	3-6- Exposure	14
	3-7- Absorption, Metabolism, Distribution and Excretion	15
	3-8- Toxicity	16
	3-8-1- Acute Toxicity	16
	3-8-2- Delayed Neuropathy	18
	3-8-3- Effects on Reproduction	19
	3-8-4- Chlorpyrifos and the fetal birth defect	20
	3-8-5- Genotoxicity of chlorpyrifos	21
	3-8-6- Effects on the Immune System	23
	4- Mutagenicity indicator	24
	4-1- Chromosome abnormalities in mice somatic cells	25
	4-2- Chromosome abnormalities in mice germ cells	27

4	4-3- Spermatogenesis in mice	
5	5- Lettuce leaves as antimutagen	29
III-	MATERIALS AND METHODS	33
IV-	Results and Discussion	39
\mathbf{V} -	Summary	60
VI-	References	62
	Arabic Summary	

I- INTRODUCTION

Chlorpyrifos [O, O-diethyl-O-(3, 5, 6-trichloro-2-pyridyl)-phosphorothioate] is one of the most widely used organophosphate insecticides (*Donaldson et al.*, 2002). According to the U.S. Environmental Protection Agency, approximately 800 registered products on the market contain chlorpyrifos, and these products are used for a number of purposes, including pest control for a variety of food crops, turf and ornamental plants, green houses, and sod; indoor pest control; structural pest control; and pet collars (*Smegal*, 2002).

The primary mechanism of action of chlorpyrifos involves the inhibition of acetylcholinestrase resulting in a wide range of neurotoxic effects in humans, such as sensory and motor neuropathy with permanent paralysis (*Meggs*, 2003).

Some experimental studies proved that chlorpyrifos-induced genotoxicity (Patnaik and Tripathy, 1992; Rahman et al., 2002), sisterchromatid exchanges (Amer and Aly, 1992; Sobti et al., 1982), and chromosomal loss (Woodruff et al., 1983). In rats, chlorpyrifos has been found to induce mitotic abnormalities and cytotoxicity (Roy et al., 1998); immunologic abnormalities, such as increased expression of the CD5 and CD8 surface markers (Blakley et al., 1999); and generation of reactive oxygen species, DNA damage, and lactate acid dehydrogenase leakage (Bagchi et al., 1995). Also, De Saliva and Samayawardhena, (2005) demonstrated that chlorpyrifos affects mating behavior, number of offspring and offspring survival in guppy. But Recent work on organophsphate pesticide illustrate that exposure to neurotoxic compounds, such as chlorpyrifos, at levels considered safe for adults could lead to permanent loss of brain function in early childhood exposure and that these concerns were relevant to the average child's exposure to pesticide residues in their diet (*Slotkin*, 2004).