Early Management of Brachial Plexus Injury in Adults

Thesis submitted for fulfillment of Master degree in Surgery

By Fady Mohammad Alkonaiesy M.B.B.Ch., 2003

Under supervision of

Prof. Dr. Taher Ismail Ahmed

Professor of Plastic & General Surgery Faculty of medicine - Cairo University

Prof. Dr. Khaled Makeen

Professor of Plastic & General Surgery Faculty of medicine - Cairo University

Prof. Dr. Tarek A. Amer

Ass. Professor of Plastic & General Surgery Faculty of medicine - Cairo University

Faculty of Medicine Cairo University 2012

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

(قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِلاَّ مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَيْمُ الحَكِيمُ) إِنَّكَ أَنْتَ العَلِيمُ الحَكِيمُ)

صدق الله العظيم سورة البقرة: آية (٣٢)

Abstract

Abstract

. Primary reconstruction is the initial surgical management and may include nerve surgery /reconstruction (eg, direct repair, neurolysis, nerve grafting, nerve transfers) which is the topic of the this study . Secondary reconstruction may be necessary to improve function, either to augment partial recovery or to obtain function when none has been achieved. This may include soft tissue reconstruction (eg, tendon/muscle transfer, free muscle transfer) and bony procedures (eg, arthrodesis, osteotomy), but typically not nerve surgery.

Key word: DREZ- MNCS- Plexus- Adults- Injury

Acknowledgement

First and foremost, thanks to **Allah** who gave me everything & guided me to the frank clear way and offered me the assistance of honest professors.

I find no words by which I can express my extreme thankfulness, deep appreciation, and profound gratitude to **Professor Dr. Taher Ismail Ahmed** Professor of General & Plastic surgery, Faculty of medicine, Cairo University, who taught me the milestones of research work. To him, I would like to express my appreciation for his continuous guidance, encouragement and supervision.

I wish also to express my appreciation to **Professor Dr. Khaled Makeen** Professor of General & Plastic surgery, Faculty of medicine, Cairo University, who kindly helped me by his precious time, keen supervision and generous support.

It is of my pleasure to express sincere thanks to **Professor Dr. Tarek A. Amer** Ass.Professor of General & Plastic surgery, Faculty of medicine, Cairo University, for his continuous support, persistent encouragement and valuable expert advices.

Last but not least, I would like to express my endless thanks and deepest gratitude to all my family, especially to my kindhearted parents and lovely wife for their support, understanding, assistance and tolerance all the time till this work was completed.

List of Contents

	Page
Introduction	1
Aim of the work	4
Review of literature.	5
Chapter 1: Anatomy of the brachial plexus	5
Chapter 2: Pathophysiology	19
Chapter 3: Epidemiology of Adult Brachial Plexus Injuries	31
Chapter 4: Clinical picture of Adult brachial plexus injuries	33
Chapter 5: Investigations	39
Chapter 6: Early Surgical treatment of adult brachial plexus injuries	53
Patients and methods	93
Results	107
Discussion	114
Conclusion	120
Summary	121
References	123
Arabic Summary	

List of abbreviations

CMAP: Compound muscle action potential

CNS : Central nervous system

CSF : Cerebrospinal fluid

CT : Computerized tomography

DC: Direct current

DREZ: Dorsal root entry zone

DRG : Dorsal root ganglion

EMG : Electromyography

ENDO: Endoneurium

ER : Emergency room

Ext EPI : external epineurium

ICN: Intercostal nerve

Int EPI internal epineurium

LSS : Lower subscapular nerve

LT : Lower trunk

mA : Milli ampere

MABC: Medial antebrachial cutaneous nerve

MBC: Medial brachial cutaneous nerve

MNCS: Motor nerve conduction studies

MPN: Medial pectoral nerve

MRI : Magnetic resonance imaging

NAP : Nerve action potential

OBPP: Obstetrical brachial plexus palsy

PERI : Perineurium

PNS: Peripheral nervous system

SNAPs: Sensory nerve action potentials

SSN : Suprascapular nerve

TD : Thoracodorsal nerve

USS : Upper subscapular nerve

UT : Upper trunk

List of Figures

Fig. No.	Title	Page
1	Diagrammatic representation of the Brachial Plexus	5
2	Components of brachial plexus	6
3	Diagram of the spinal nerve and its relations	7
4	Axial section through midcervical area revealing brachial plexus	11
5	Anatomy of Brachial plexus (supraclavicular region)	12
6	Anatomy of Brachial plexus (infraclavicular region)	13
7	The pre-fixed variety of brachial plexus	17
8	The post-fixed variety of brachial plexus	17
9	Dermatomal supply of brachial plexus	18
10	(a, b) The sudden widening of the neck-shoulder angle causes a severe traction to the brachial plexus	20
11	Cross section of a peripheral nerve.	22
12	Comparison of the Seddon and Sunderland classification of peripheral nerve injury	23
13	Schematic diagram of the three grades of traumatic peripheral nerve injury as classified originally by Seddon	24
14	Cellular responses in peripheral nerve injury	25
15	Central mechanism of root avulsion	27
16	Peripheral mechanism of root avulsion	25
17	Upper brachial plexus injuries occur when the head and neck are violently moved away	29
18	Hanging injury affecting lower brachial plexus	29
19	Root Contribution to Motion Tested	37

Fig. No.	Title	Page
20	Compound muscle action potential recorded from the thenar eminence following stimulation of the median nerve at the wrist.	41
21	Three basic types of alteration in the compound muscle action potential	42
22	Mild reduction in amplitude of the compound muscle action potential with a nearly normal latency	42
23	Increased latency of the compound muscle action potential with normal amplitude	43
24	Nerve excitability distal to the lesion in neurotmesis or substantial axonotmesis	43
25	The diagnosis of preganglionic injury can be made readily when a pseudomeningocele is apparent on myelography	47
26	Excellent visualization of nerve roots can be afforded by newer techniques of CT myelography	48
27	Coronal T2WI Psedomeningocele of C8 and stretch injury of divisions	49
28	3-D MR myelogram	50
29	Longitudinal ultrasonograms of the left neck area	52
30	Types of nerve repair	60
31	Intraplexal nerve grafting with donor nerves	62
32	Positioning of patient and skin incision for anterior supraclavicular approach.	64
33	Division of clavicular insertion of sternocleidomastoid muscle.	65
34	Course of phrenic nerve on anterior surface of scalenus anticus muscle	66
35	Further exposure of supraclavicular plexus. Spinal nerves, trunks, and divisions are exposed	67

Fig. No.	Title	Page
36	Exposure of foraminal C6 spinal nerve by removing part of transverse process	68
37	Drawing illustrating the pectoralis major muscle being split in the direction of its fibers	70
38	Drawing illustrating the blunt dissection and transection of the pectoralis minor muscle	70
39	Anatomical relationship of the available donor nerves for nerve transfer	77
40	Case 1 with good elbow flexion	111
41	Case 2 is doing good elbow flexion and full shoulder abduction	112
43	Case 3 with good elbow flexion against resistance	113

List of Tables

Table No.	Title	page
1	Potential donor nerves and number of myelinated axons	76
2	Number of myelinated axons in nerves of the upper extremity	76
3	Epidemiology of cases	107
4	Number of cases affected it each level of injury	107
5	Associated injuries in cases	108
6	Side of injury in cases	108
7	Level of injury of cases	109
8	Intraoperative findings and procedures done in cases	109
9	Surgical options in cases	109
10	Postoperative results regarding improvement	110
11	Summary of postoperative results after 1 year of surgery	110

Introduction

The surgical management of severe brachial plexus injuries has evolved over the past 40 years from one of amputation of the paralyzed arm to one of nerve reconstruction and free muscle transplantation. The alternatives in surgical management were amputation through the upper arm, arthrodesis of the shoulder, and fitting with prosthesis. At that time, all efforts were made to establish whether the injury was a preganglionic lesion (in which case there was no chance of spontaneous recovery) or a postganglionic lesion (in which case there was a chance for spontaneous recovery if the lesion was in continuity and for reconstruction if continuity was lost). Usually, a period of 3 months was allowed to elapse while awaiting spontaneous recovery before surgical exploration was performed. Developments in microsurgery and the principle of tension-free repair have expanded the strategies in brachial plexus management. Microsurgeons who are involved with the reconstruction of brachial plexus injuries still face the followings problems:

- 1. The lack of adequate proximal intraplexus donors.
- 2. The lack of adequate nerve grafts.
- 3. The great distances for elongating axons to travel (*Terzis and Kostopoulos*, 2007).

Bonney (1983) preferred early surgery few days after the accident, even in closed injuries, for two reasons:

- 1. The anatomical situation can be easily clarified because a few days after the accident there is no fibrosis or scar tissue formation.
- 2. Early primary surgery may save time. However, the first argument is based on an error in basic thinking. The fibrosis or scar tissue formation is caused by the trauma. In cases of early surgery, it will develop after surgery and the surgeon accepts this risk in order to

deal with nerve stumps that can be easily seen but will become fibrotic in 2–3 weeks time. With early surgery the surgeon cannot allow for this. In addition, the eventual damage to neurons is dependent on the trauma and will happen anyway. There is good evidence that early secondary repair offers a better chance for regeneration. The neurons will be in an active phase, and the secondary trauma creates greater axon sprouting than the initial repair (*Millesi*, 2003).

Immediate plexus exploration and reconstruction is indicated for a penetrating injury, such as a stab wound, or after an iatrogenic injury, such as injury to the plexus at the time of first rib resection for the treatment of thoracic outlet syndrome. Occasionally, the reconstructive surgeon gets the opportunity to assess the degree of damage to the plexus when emergency vascular reconstruction of an injured subclavian or axillary artery is performed by the vascular surgeons at the time of injury. There are many arguments against immediate reconstruction of the plexus in traction injuries, in addition to the diagnostic dilemmas. Most surgeons believe that some period of time must pass to permit the surgeon to be able to delineate injured from non injured nerve (*Hentz and Doi*, 2008).

If exploration is indicated at the time of injury (high-energy injury causing a total plexus palsy), we prefer to wait 6 to 8 weeks after injury. This waiting period allows time for diagnostic tests and permits the patient to experience the effects of the injury. Because the functional results of reconstruction of severe plexus injuries are, on average, disappointing when compared with the function of the normal limb, the patient who has lived with a flail limb for some time may better accept the ultimate functional limitations of microneural reconstruction (Allico et al, 1984).

The surgical management of brachial plexus injuries has traditionally involved neurolysis and nerve grafting procedures. However, innovative nerve transfers, or neurotization techniques, have recently acquired a more prominent role in repair. Although nerve transfers were introduced as a means to augment plexus repair, they have proven to be particularly useful in the setting of severe proximal brachial plexus trauma, e.g., multiple root avulsions. The goal of nerve transfer is to use nerves or fascicles with redundant or less important function as donors to restore function in a more important damaged neuromuscular unit. The key principles governing nerve transfer include the selection of a donor nerve with adequate motor fibers, the sacrifice of which will not result in a loss of critical function. The recipient nerve should be re-innervated as close as possible to the target muscle. When possible, the repair should be done without an intervening nerve graft, surgery should be performed as early as possible after injury, and, ideally, the neuromuscular units involved should have agonistic properties (*Nathan and Eric*, 2008).

Healing processes, surgeon, patient and rehabilitation program are the main factors influencing the outcome of the treatment. Healing processes involve age, degree, extent, and location of injury; and time interval between injury and surgery. The surgeon can directly influence the overall outcome, although assurance of functional restoration is unpredictable. A thorough knowledge of the gross and internal anatomy of the brachial plexus, an understanding of the nerve pathophysiology, meticulous microneurovascular skills, and familiarity with conventional hand reconstruction are basic requirements for the brachial plexus reconstructive surgeon. The rehabilitation program includes intensive physiotherapy, treatment of pain, and direction to use the crippled limb for return to normal work and life or in retaining for another occupation (*Chwei and Chuang*, 2006).

Aim of the work

To investigate the proper timing and surgical technique of early management of adults with brachial plexus injury and to study the advantages and disadvantages of each technique.