Effect of Different Preparation Designs on the Fracture Resistance and Failure Modes of Polymer Infiltrated Ceramic Endocrown Restorations

A thesis submitted for the partial fulfillment of the Doctorate

Degree requirements in Crown and Bridge Department,

Faculty of Dentistry, Ain Shams University

By

Doaa Taha Sayed Taha

B.D.S, Faculty of Dentistry, Ain Shams University, 2008 M.sc, Faculty of Dentistry, Ain Shams University, 2013

Faculty of Dentistry, Ain Shams University

2016

Supervisors

Dr. Tarek Salah Morsi

Assistant professor of fixed prosthodontics

Crown and bridge department. Faculty of Dentistry,

Ain Shams University

Dr.Marwa Mohamed Wahsh

Assistant professor of fixed prosthodontics

Crown and bridge department. Faculty of Dentistry,

Ain Shams University

Dr.Ahmed Ezzat Sabet

Lecturer of fixed prosthodontics

Crown and bridge department. Faculty of Dentistry,

Ain Shams University

Dedication

This work is dedicated to

My beloved parents

Dear husband

Lovely daughter

My sisters & my brother

Heknowledgment

First and foremost, thanks are due to Allah the Beneficent and Merciful.

All my appreciation, utmost respect to **Dr.Tarek Salah Morsi**, Professor and Head of Crown and Bridge Department, Faculty of Dentistry, Ain Shams University ,for his kind supervision and fruitful suggestions.

I would like to express my special thanks and gratitude to **Dr. Marwa Mohamed Wahsh**, Lecturer at Crown and Bridge Department, Faculty of Dentistry, Ain Shams University, for her patience, meticulous supervision and unlimited willingness for guiding.

I also wish to extend my deepest appreciation to **Dr.Ahmed Ezzat Sabet**, Lecturer at Crown and Bridge Department, Faculty of Dentistry, Ain Shams University, for his valuable advice and great effort throughout this project.

Finally, I wish to express my sincere thanks to all staff members and colleagues who have continued to support me throughout this project.

List of Contents

List of tables	II
List of figures	III
Introduction	1
Review of literature	3
Aim of the Study	26
Materials & Methods	27
Results	66
Disscusion	89
Summary and conclusion	103
References	108
Arabic Summary	

List of tables

Table 1: Materials used in the study	27
Table 2: Technical data of VITA ENAMIC blocks	28
Table 3: Physical properties of Build-It FR Fiber Reinforced core	
material	29
Table 4: Technical data of RelyX Unicem2 cement	30
Table 5: Experimental factorial design	34
Table 6: Classification of mode of fracture (Burke's classification) 6	54
Table 7: Descriptive statistics of fracture resistance of endocrowns wit	h
different finish line extensions, occlusal thicknesses of the restoration	
and filling the pulp chamber6	57
Table 8: ThreeWay ANOVA showing the effect of finish line extensio	n,
occlusal thickness of the restoration and filling the pulp chamber and	
their interactions on fracture resistance of endocrowns	' 0
Table 9: Effect of interaction between finish line extension and occluse	ıl
thickness of the restoration on the fracture resistance (N):	′2
Table 10: Effect of interaction between finish line extension and filling	5
of the pulp chamber on the fracture resistance (N):	13
Table 11: Effect of interaction between occlusal thickness of the	
restoration and filling pulp chamber variables on the fracture resistance	
(N):	′ 5
Table 12: Effect of interaction between finish line extensions, occlusal	
thickness of the restoration and filling the pulp chamber on the fracture	
resistance (N)	7
Table 13: Frequency (n) and percentage (%) of Fracture modes for	
different tested groups	/8

List of Figures

Figure 1: Polymer infiltrated ceramic blocks	28
Figure 2: Surveyor	35
Figure 3: Computerized Numerical Control (CNC) milling machine	36
Figure 4: Schematic presentation of butt margin preparation with 2 mi	m
occlusal thickness endocrown restoration with the pulp chamber	37
Figure 5: Schematic presentation of butt margin preparation with 3.5	
mm occlusal thickness endocrown restoration with the pulp chamber	
(A) Filled (B3.5F) (B) Not filled (B3.5N)	37
Figure 6: Schematic presentation of shoulder finish line preparation	
with 2 mm occlusal thickness endocrown restoration with the pulp	
chamber (A) Filled (S2F) (B) Not filled (S2N)	38
Figure 7: Schematic presentation of shoulder finish line preparation	
with 3.5 mm occlusal thickness endocrown restoration with the pulp	
chamber (A) Filled (S3.5F) (B) Not filled (S3.5N)	38
Figure 8: Adjustment of the divergence of pulp chamber walls	
Figure 9: Preparing the teeth with a: 90° butt margin (group B), b: axis	al
reduction and shoulder finish line (group S)	40
Figure 10: Occlusal view a: 90° butt margin (group B), b: axial	
reduction and shoulder finish line (group S)	
Figure 11: Buccal view a: 90° butt margin (group B), b: axial reducti	on
and shoulder finish line (group S)	41
Figure 12: Occlusal reduction a: 2 mm b: 3.5 mm	42
Figure 13: Filling the pulp chamber with fiber reinforced core materia	ıl
	44
Figure 14: Pulp chamber filling with fiber reinforced core material	44
Figure 15: a: Monitor showing inLab 3D Software, b: The inLab MC 2	XL
milling unit	45
Figure 16: Selection menu for the type of restoration and design	
technique	46
Figure 17: Selection menu for the materials	47
Figure 18: Spraying the preparations with cerec optispray	48
Figure 19: The 360° virtual die	48
Figure 20: Scanning the coated preparations with cerec bluecam	49

Figure 21: Margin definition step	50
Figure 22: Adjusting insertion axis	51
Figure 23: The proposed design for the endocrown	52
Figure 24:Adjustment of the occlusal thickness of the endocrown	
restoration	53
Figure 25: The final restoration	54
Figure 26: Milling preview	54
Figure 27: Grinding instruments a: Step bur 12 S b: Cylinder poin	ted
Bur 12 S	55
Figure 28: VITA ENAMIC Polishing Set	56
Figure 29: Measuring occlusal thickness with caliper a: 3.5 mm, b:	
2mm	57
Figure 30: Milled endocrowns viewed from the fitting surface, a: az	kial
reduction and shoulder finish line (group S), b: 90° butt margin (group S)	oup
B)	58
Figure 31: Etching with hydrofluoric acid	60
Figure 32: Silanization with the primer	60
Figure 33: Application of adhesive resin cement	60
Figure 34: Device for application of standardized load during	
cementation	61
Figure 35: Cemented endocrown	61
Figure 36: Thermal cycling simulation machine	62
Figure 37: Universal testing machine	63
Figure 38: Examples of fractured specimens	65
Figure 39: Line chart showing fracture resistance mean values of	
polymer infiltrated ceramic endocrowns with butt margin design a	and
two occlusal thicknesses and different filling of the pulp chamber	69
Figure 40: Line chart showing fracture resistance mean values of	
polymer infiltrated ceramic endocrowns with shoulder margin design	gn
and two occlusal thicknesses and different filling of the pulp chamb	er69
Figure 41: Column chart of mean values of fracture resistance of tw	/O
finish line extensions and two occlusal thicknesses	72
Figure 42: Column chart of mean values of fracture resistance of tw	/O
finish line extensions and filling the pulp chamber variables	74
Figure 43: Column chart of mean values of fracture resistance of tw	/O
occlusal thicknesses and filling pulp chamber variables	75

Figure 44: Column chart of fracture loads (N) mean and standard	
deviations measured for different finish line extensions, occlusal	
thicknesses of the restoration and filling the pulp chamber	77
Figure 45: column chart showing modes of fracture of different tested	1
groups	79
Figure 46: Pie Chart representing mode of fracture of all endocrowns	79
Figure 47: Representative of failure mode V (severe fracture of the	
tooth and the endocrown) in group B2N (75% incidence)	80
Figure 48: A pie chart of fracture pattern % for group B2N	80
Figure 49: Stereomicroscopic image showing failure mode I where	
there is only minimal fracture and some cracks observed by	
magnification10x in group B2F (25% incidence)	81
Figure 50: A pie chart of fracture pattern % for group B2N	81
Figure 51: Representative of failure mode V (severe fracture of the	
tooth and the endocrown) in group B3.5N	82
Figure 52: A pie chart of fracture pattern % for group B3.5N	82
Figure 53: Representative of failure mode II (less than half of the	
endocrown was lost) in group B3.5F	83
Figure 54: A pie chart of fracture pattern % for group B3.5F	83
Figure 55: Representative of failure mode IV (more than half of the	
endocrown was lost) in group B3.5F	84
Figure 56: A pie chart of fracture pattern % for group S2N	84
Figure 57: A pie chart of fracture pattern % for group S2F	85
Figure 58: Stereomicroscopic image showing failure mode V (severe	
fracture of the tooth and the endocrown) in group S2F	86
Figure 59: A pie chart of fracture pattern % for group S3.5N	87
Figure 60: Representative of failure mode V (severe fracture of the	
tooth and the endocrown) in group S3.5N	87
Figure 61: Representative of failure mode II (less than half of the	
endocrown was lost) in group S3.5F	87
Figure 62: A pie chart of fracture pattern % for group S3.5F	87

The primary reason for performing endodontic therapy is the preservation of teeth and preventing their loss. However, endodontic treatment renders them more susceptible than vital teeth to biomechanical failure because of the access preparation. (1; Also, loss of structural integrity of endodontically treated teeth caused by several reasons such as caries or trauma results in reduction in the fracture resistance and stiffness of such teeth. Compared to vital teeth, endodontically treated teeth undergo increased cuspal deflection during loading and then delayed recovery upon removal of the load leading to crown fractures. (3; 4; 5)

This biomechanical alteration inflicts a negative impact on the long-term prognosis of the tooth and therefore the rehabilitation of endodontically treated teeth is considered to be challenging. ^(3; 6) Generally, the clinical survival of restored teeth is dependent on the restorative material, technique, remaining tooth structure, and the interactions between material, teeth, and the oral environment. ⁽⁷⁾ This means that the amount of sound tooth structure that will remain following root canal therapy and any subsequent preparation is an important factor in planning the restoration of endodontically treated tooth. ⁽⁸⁾

To date, there is still no clear agreement in the literature about which material or technique can restore endodontically treated teeth optimally. ⁽⁹⁾ The classical approach for restoring endodontically treated teeth is to build up the tooth with a post and core, utilizing adhesive procedures and placement of full-coverage crowns with a sufficient ferrule. ^(6; 10) This technique though

Introduction

successful had many disadvantages leading to other alternative suggestions such as endocrowns.

The endocrown is a "one-piece ceramic construction comprising a circumferential butt margin and a central retention cavity inside the pulp chamber and constructs both the crown and core as a single unit". The main advantages of such approach is utilizing the available surface in the pulp chamber to improve retention through adhesive bonding in addition to conservatism by following the concept of decay-orientated design. (11; 12)

An important area of interest is the choice of the restorative material. Materials with mechanical properties similar to those of sound teeth improve the reliability of the restorative system. (13) Polymer infiltrated ceramics have been suggested recently as a hybrid material combining the properties of ceramic and polymer forming what's called double network hybrid ceramic material. (14) Their efficiency in the construction of different types of restorations and specially endocrowns is worth a trial.

Little information have been available regarding variation of basic preparation guidelines for restoring endodontically treated teeth using endocrown restorations milled from the recently introduced ceramic materials in an attempt to improve their fracture resistance. It's important that factors such as the extension of the finish line and the occlusal thickness of the restoration will be further investigated in order to get more information about their potentials for clinical use.

• Restoration of endodontically treated teeth:

Recently, the growing appreciation of the importance of maintaining teeth vitality and the increased knowledge about the high risk of biomechanical failure of endodontically treated teeth have led to considering the concept of minimally invasive dentistry more than ever before.

It was proposed repeatedly by several studies that the dentin in endodontically treated teeth is different from that of vital teeth assumingly due to water loss and loss of collagen crosslinking. (15) **Sedgley and Messer (2002)** (16) tested the biomechanical properties of dentin of endodontically treated teeth and vital teeth of contralateral side and concluded that endodontically treated teeth are not more brittle. It's worth mentioning that although the loss of tooth vitality is not accompanied by significant change in tissue moisture or collagen structure, endodontic therapy, and, in particular, the use of irrigants such as sodium hypochlorite and chelators, proved to soften dentin.

Alteration in the biomechanics of endodontically treated teeth are mainly due to tissue loss caused by previous pathologies (caries, fracture, cavity excavation), endodontic treatment (access cavity, root canal shaping), and invasive restorative procedures (post placement, crown fabrication). ⁽⁶⁾ It was found that conservative access cavity preparation reduces tooth stiffness by only 5%, but loss of marginal ridges causes more reduction. It was

reported in literature that reduction in tooth stiffness following occlusal and mesio occlusal distal (MOD) cavity preparations is 14% to 44% and 20% to 63% respectively. (17) Also, lack of neurosensory feedback mechanism following teeth devitalization results in poor protection mechanisms of such teeth.

When the devitalization of teeth is inevitable, a successful clinical prognosis of these endodontically treated teeth depends mainly on adequate root canal treatment followed by proper restorative treatment. (18) The main objectives of a restoration following root canal treatment are restoring function and esthetics and preventing bacterial micro-leakage into the root canal system. (19) Also, it is important for periodontal health and protection of residual tooth structure against fracture. (19) Inadequate restoration of endodontically treated teeth may lead to coronal micro-leakage followed by failure and extraction of such teeth in about 60% of the cases making the time factor very important and final restorations should follow as soon as possible. (20; 21)

The restoration of endodontically treated teeth is considered to be challenging mainly because of the structural differences between vital and non-vital root canal filled teeth. It has long been guided by empirical rather than biomechanical concepts. Despite the fact of the abundance literature concerning this issue, still the controversy and empiricism found cannot be neglected. This is complicated by the wide available range of restorative materials and techniques and the lack of accepted clinical standards regarding the best method of non vital teeth restoration. ⁽⁶⁾ Focusing on the relevant advantages and

disadvantages of different available techniques may offer some help for the clinician to choose the proper restoration. (19)

Minimal loss of coronal tooth structure relates to teeth that had minimal or no restoration but require root canal treatment. The remaining tooth structure should present only minimal loss in strength compared to a vital tooth, provided that there are no horizontal or vertical cracks, the endodontic access cavity and enlargement of the pulp chamber minimally are considered not to significantly affect tooth biomechanical properties. (22; 23) The authors proposed treating such teeth with adhesive restoration filling the access cavity and pulpal chamber only with the choice of material limited to composite resins, in combination with an effective adhesive system. (24) This conservative approach is contraindicated in patients with parafunctional habits, group guidance and steep cuspal inclination, which may require complete occlusal coverage. (22)

In cases where up to one half of the coronal tooth structure is missing, the coronal structure is enough to provide restoration retention and strength, teeth with existing medium-sized restorations that require root canal treatment do not need a post-core restoration. Complete occlusal coverage, such as an endocrown or onlay restorations, is proposed. ⁽⁶⁾ But when more than half of the coronal tooth structure is missing, the surface available for adhesion is limited. In such case, post-core restoration is obligatory to ensure resistance of the restoration to fracture. A ferrule effect should be attained by extending restoration margins 1.5-2.0 mm below the foundation limits. However, this option is