

Ain Shams University - Faculty of Engineering

EFFECT OF USING MULTIPLE ROW-PILE BREAKWATERS AS WAVE ENERGY DISSIPATER IN COASTAL AREAS

A Thesis Submitted in the Partial Fulfillment of the **Doctor of Philosophy**

Civil Engineering - Irrigation & Hydraulics BY

CHRISTINA FRANCIS GAD ABD ELMALAK

B.Sc. (2008) Civil Engineering, El Shourok Academy M.Sc. (2012) Civil Engineering, Ain Shams University.

Supervised by

Prof.Dr.Sonia El-SerafyProf. of Coastal Engineering
Ain Shams University

Prof.Dr.Yasser Elsayed Mostafa

Professor of Harbor Engineering & Marine Structures Ain Shams University Dr. Yasser Mohamed. EL Saie

Associate Professor Irrigation & Hydraulics Dept. Ain Shams University

Cairo

2017

EFFECT OF USING MULTIPLE ROW-PILE BREAKWATERS AS WAVE ENERGY DISSIPATER IN COASTAL AREAS

By

Eng. CHRISTINA FRANCIS GAD ABD ELMALAK

A Thesis Submitted in the Partial Fulfillment of the **Doctor of Philosophy**

Civil Engineering - Irrigation and Hydraulics

Examiners Committee

Name		Signature
Prof. Dr. ABD EL MOHSEN EL MON	GY Professor of Coastal and Harbor Engineering, Ain Shams University	
Prof. Dr. Abdelazim Mohamed Ail	Professor of national water research center, hydraulics research institute	
Prof.Dr.Sonia El-Serafy	Professor of Coastal Engineering, Ain Shams University	
prof. Dr. Yasser Elsayed Mostafa	Professor of Harbor Engineering	
	& Marine Structures Ain Shams University	••••••

TITLE SHEET

Name: Christena Fransis Gad Abd Elmalak

Degree: Doctor of Philosophy

Department: Irrigation & Hydraulics

Faculty: Engineering

University: Ain Shams

Graduation Year: 2008

Degree Granting Year: 2017

THE AUTHOR

Name: Christena Fransis Gad Abd Elmalak

Date of birth: November-03-1985

Place of birth: Cairo, Egypt.

Scientific Degrees B.Sc. Civil Engineering June-2008

M.Sc. Civil Engineering - Irrigation and Hydraulics, Ain shams 2012

Present position: Assistant Lecturer, Civil

Engineering, El Shourok Academy

STATEMENT

This thesis is submitted to the Irrigation and Hydraulics

Department, Faculty of Engineering, Ain Shams University
in the partial fulfilment of the requirements for the Degree
of Doctor of Philosophy in Civil Engineering.

The work in this thesis was carried out in the Civil

Engineering, El Shourok Academy from 2014 to 2016

No part of this thesis has been submitted for a degree or a qualification at any other university or institution

Date:

Signature:

Name: Christena Fransis gad

ACKNOWLEDGMENT

First and foremost, praise and thanks For God.

Deepest gratitude and appreciation are to be conveyed to **Prof. Dr. Sonia El-Serafy,** Professor of Coastal Engineering, Ain Shams University, for the kind supervision, support, guidance, help, encouragement and useful suggestions all through this work.

Indebted to **Dr. YASSER EL SAYED MOSTAFA**, Professor of Harbor Engineering & Marine Structures, Ain Shams University, for constant supervision, planning, generous support, helpful advice and constructive thoughts throughout this work.

Thanks are extended to **Dr. YASSER SADEK EL-SAIE**, Associate Professor in Irrigation and Hydraulics Department, Ain Shams University, for his constant supervision, planning, generous support and help during the course of this work.

Finally, appreciations are due to my parents and family for their support.

ABSTRACT

In terms of the importance of safeguarding the coastal zone in Egypt, this thesis was initiated with the motivation of proposing an innovative coastal protection measure and investigating its capability of energy dissipation, experimentally. Primarily, literature was reviewed, analysed, categorized and comprehended. models to solid piles breakwater were designed and constructed. Experimental flume was set up to test these models, where measuring devices were arranged. Contributing parameters (i.e. wave height, period, steepness, piles arrangements, diameters....etc.) were varied. Measurements were undertaken ;analysed; presented on graphs and discussed. Based on the discussions and within the experimented range of parameters, it was clear that solid piles so as the staggered possess an enormous capability of dissipating the wave energy by a percentage that ranged between 20 to 75%, which is considered to be a reasonable amount from the coastal engineering point of view. In terms of the importance of coastal zones, some previous research tried to reduce wave energy attacking the shoreline. This thesis presents a special coastal protection measure which is perforated piles, evenly distributed and staggered, breakwaters and experimentally investigates piles breakwaters capability of energy dissipation. Physical models of perforated piles breakwater were designed and constructed. Experimental flume was arranged to test these models and measuring devices were arranged. Contributing parameters such as wave height, period, steepness, piles arrangements and pile diameter were varied. Based on the discussions and within the experimented range of parameters, it was clear that perforated piles possess an enormous capability of dissipating the wave energy by a percentage ranged between 15 to 55% which is considered to be significant amount from the coastal engineering point of view. It can also be applied to the equation (C_t) on the solid piles. Moreover, the pile breakwater was investigated to assess it, in terms of the

environmental impact (i.e. shoreline changes) and economic (i.e. cost estimate), but found piles breakwater better than rubble mound breakwater.

Key words:

Pile breakwater ---Wave transmission -- Wave reflection—Energy dissipation

ACKNOWLEDGMENT	i
ABSTRACT	ii
LISTOFFIGURES	٧
NOTATION	. vi
ACKNOWLEDGMENT	6
ABSTRACT	7
List of tables	8
NOTATION	9
CHAPTER (1) INTRODUCTION	
1.1. PROBLEM DEFINITION	
1.2. STUDY OBJECTIVES	
1.3. RESEARCH METHODOLOGY	
1.4. THESIS LAYOUT	
CHAPTER (2): REVIEW OF LITERATURE	
2.1. COASTAL DISCIPLINES AND PROJECTS PLANNING	
2.2 WAVES AND WINDS	
2.3. WAVE TRANSFORMATION MECHANISMS	
2.3.1. WAVE REFLECTION	_
2.3.2. WAVE TRANSMISSION	
2.3.3. WAVE BREAKING	
2.4. WAVE ENERGY DISSIPATION	
2.5. WAVE STRUCTURE INTERACTION	
2.6. INVESTIGATIONS OF PILE BREAKWATERS	
2.6.a. INVESTIGATIONS IN THE FIELD OF PILES	
2.6.b. INVESTIGATIONS ON PERFORATED PILE BREAKWATERS	
2.7. INVESTIGATIONS ON PILE BREAKWATERS	
2.8.APPLICATIONS AND CASE STUDIES	
CHAPTER (3) EXPERIMENTAL WORK	
3.1. HYDRAULIC MODELING	
3.2. CHOOSING THE SCALE OF THE MODEL	
3.3. MODELING OF THE INVESTIGATED PARAMETERS	
3.3.1. MODELING OF THE INVESTIGATED FARAMETERS	
3.3.2. MODELING OF THE PEOID PEOW PROPERTIES	
3.4. EXPERIMENTAL WORK	
3.4.1. USED EXPERIMENTAL DEVICES	
3.4.2. EXPERIMENTED WAVE VARIABLES	
3.4.3. WAVE ABSORBERS	
3.5. EXPERIMENTAL PROGRAM	
3.6. MODEL CALIBRATION	
3.7. EXPERIMENTAL PROCEDURE	
CHAPTER 4 DIMENSIONAL ANALYSIS	
4.1. CONSIDERED VARIABLES	
4.2. DIMENSIONAL ANALYSIS	
5.1 PHYSICAL QUANTITIES	
5.1.1 WAVE PARAMETERS	
5.1.2 COMPUTED QUANTITIES	
5.2 RESULTS OF DIMENSIONLESS COEFFICIENTS (C _t , C _r , and C _d)	
5.2.1 COEFFICIENT OF TRANSMISSION (C _t)	
5.2.2FOR CONFIGURATION (1)	
5.2.2.1 RELATION BETWEEN (C _t) AND (H _i /L)	.20

5.2.3 COEFFICIENT OF REFLECTION (C _r)	28
5.2.3.3 RELATION BETWEEN (C _r) AND (S/D)	34
5.2.3.4 RELATION BETWEEN (C _t) AND $(T\sqrt{g}/d)$	35
5.2.3.5 RELATION BETWEEN (Ct) AND (D/L)	
5.2.4 COEFFICIENT OF DISSIPATION (C _d)	36
5.2.4.1 RELATION BETWEEN (C _d) AND (H _i /L)	36
5.3 COMPARISON WITH OTHER RESEARCH	40
5.4 COMPARISON OF SOLID PILE RESULTS	
5.5. COMPARISON OF PERFORATED PILE RESULTS	
5.5.1 RESULTS OF DIMENSIONLESS COEFFICIENTS (Ct, CrAND Cd)	41
5.5.1 .1COEFFICIENT OF TRANSMISSION (C_t), ϵ =14% ,D =5 Cm	41
5.5.2.2 COEFFICIENT OF TRANSMISSION (C_t), ϵ =20%	42
5.5.2 .3 COEFFICIENT OF TRANSMISSION (C_t), ϵ =14% ,D =7.5 Cm	
5.5.2.4COEFFICIENT OF REFLECTION (C_r), ϵ =14%, D =7.5 Cm	43
5.5.2 .5COEFFICIENT OF DISSIPATION (C _d), ϵ =14%, D =7. 5 Cm	45
5.6. EFFECT OF ENERGY DISSIPATION (RELATION BETWEEN (E _t) & (D))	46
5.7. ESTABLISHED EQUATIONS	
5.7.1. REGRESSION STEP-BY-STEP USING MICROSOFT EXCEL	47
5.7.2. ESTABLISHED EQUATIONS	
6.1 ASSESSING THE ENVIRONMENTAL IMPACT OF BREAKWATER	53
6.1.a.DESCRIPTION OF GENESIS	55
6.1.b. GENESIS APPLICATION	
6.1.c. ENVIRONMENTAL IMPACT OF THE PILE BREAKWATER O N THE SHORELINE	58
6.a.2 COST ESTIMATE of PILE BREAKWATER	62
	62
6.2.b COST ESTIMATE OF STEEL PILES	
6.2.c. COST ESTIMATE OF CONCRETE PILES	63
6.3COST ESTIMATE OF RUBBLE MOUND BREAKWATER	
6.3.a COST ESTIMATE TO RUBBLE MOUND BREAKWATERAT HP= 3.75 m	64
6.4COST ESTIMATE COMPARISON	
CHAPTER (7): CONCLUSIONS AND RECOMMENDATIONS	70
7.1 CONCLUSIONS	
7.2 RECOMMENDATIONS	72
REFERENCES	73
ملخص الرسالة	124

List of figures	page
Figure (2-1) Spilling breaking wave	22
Figure (2-2) plunging breaking wave	23
Figure (2-3) Surging breaking wave	23
Figure (2-4) Collapsing breaking wave	22
Figure (2-5): Definition sketch of piled breakwater (from Suh, 2011)	26
Figure (2-6) Pile Arrays	29
Figure (2-7) Definition sketch of the multiple-row pile breakwater model	33
Figure (2-8) Test Model in the flume and Porosities (Norzana et al,(2010)	35
Figure (2.9) Elevation of the piles at low tide, showing relative close spacing (Reedijk&Alls	op, 2003) 38
Figure (2.10) Image during construction of Blairgowrie wave screen, showing piles and impanel to the right of the image (Atkins &Mocke, 2009)	ermeable 38
Figures (2.11) shows the 50% porosity model wave screens and Wave staffs attached to CCI screen(after Thomas 2010)	M wave
Figure (3.1) Plan and Elevation of the Experimental Flume	44
Figure (3-2) General View of the experimental Wave Flume	45
Figure (3-3) Plan and elevation of the model	45
Figure (3.4) General View of the Wave period device	45
Figure (3.5) General View of the Wave height device	46
Figure (3.6) Wave Absorbers	46
Figure (3.7) Measured wave parameters	48
Figure (4-1) The considered geometrical and wave parameters	51
$Figure (5-1) \ The \ relation \ between \ Transmission \ Coefficient \ (C_t) \ \ and \ Wave \ Steepness \ (H_i/L)$	I
for angle 90°, D= 6 cm for configuration (1) and configuration (2) staggered solid piles	57

Figure (5-2) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for angle 90°, $D=5$ cm for solid piles and solid staggered pile	e 57
Figure (5-3) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for angle 30°, $D=5$ cm for solid piles and solid staggered piles	
Figure (5-4) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for angle 45° , $D=5$ cm for solid piles and solid staggered piles	
Figure (5-5) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for angle 90° , $D=6$ cm for solid piles and solid staggered piles	
Figure (5-6) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for angle 30°, $D=6$ cm for solid piles and solid staggered piles	
Figure (5-7) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for angle 45°, $D=6$ cm for solid piles and solid staggered piles	
Figure (5-8) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for angle 90°, $D=7.5$ cm for solid piles and solid staggered piles	e 65
Figure (5-9) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for angle 30°, $D=7.5$ cm for solid piles and solid staggered piles	e 66
Figure (5-10) The relation between Transmission Coefficient (C_t) and Wave Steepness (H_i/L) for ang 45° , $D=7.5$ cm for solid piles and solid staggered piles	gle 67
Figure (5-11) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 90°, $D=5$ cm for solid piles and solid staggered piles	59
Figure (5-12) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 30°, $D=5$ cm for solid piles and solid staggered piles	0
Figure (5-13) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 45° , $D=5$ cm for solid piles and solid staggered piles	71
Figure (5-14) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 90°, $D=6$ cm for solid piles and solid staggered piles	72
Figure (5-15) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 30°, $D=6$ cm for solid piles and solid staggered piles	73
Figure (5-16) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 45° , $D=6$ cm for solid piles and solid staggered piles	74
Figure (5-17) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 90, $D=7.5$ cm for solid piles and solid staggered piles	
Figure (5-18) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 30 , $D=7.5$ cm for solid piles and solid staggered piles	

Figure (5-19) The relation between reflection Coefficient (C_r) and Wave Steepness (H_i/L) for angle 45° , $D=7.5$ cm for solid piles and solid staggered piles
Figure (5-20) The relation between (d/L) and Reflection Coefficient (C_r) for angle $90^\circ, 30^\circ$, and 45° For solid pile 78
Figure (5-21) The relation between (d/L) and Reflection Coefficient (C_r) for angle $90^\circ, 30^\circ$, and 45° For solid staggered pile
Figure (5-22) The relation between (S/D) and Reflection Coefficient (C_r) for different angle for constant values of h =27.5 cm For solid pile and solid staggered pile 80
Figure (5-23) The relation between $(T\sqrt{g}/d)$ and transmission Coefficient (C_t) for different (D) for constant values of T =1.10 sec , angle 90° For solid pile 81
Figure (5-24) The relation between (d/L) and transmission Coefficient (C_t) for different (D) , angle 90° for solid piles and solid staggered piles 82
Figure (5-25) The relation between (d/L) and transmission Coefficient (C_t) for different (D), T = 1.1 sec ,angle 30 $^{\circ}$ for solid piles and solid staggered piles
Figure (5-26) The relation between (d/L) and transmission Coefficient (C_t) for different (D), T = 1.1 sec ,angle 45 $^{\circ}$ for solid piles and solid staggered piles
Figure (5-27) The relation between (H_i/L) and (C_d) for different (T) ,angle 90 $^{\circ}$ D= 5 cm ,for solid piles and solid staggered piles
Figure (5-28) The relation between (H_i/L) and (C_d) for different (T) ,angle 30 $^{\circ}$ D= 5 cm for solid piles and solid staggered piles
Figure (5-29) The relation between (H_i/L) and (C_d) for different (T) ,angle 45 $^{\circ}$ D= 5 cm for solid piles and solid staggered piles
Figure (5-30) The relation between (H_i/L) and (C_d) for different (T) ,angle 90 $^{\circ}$ D= 6 cm for solid piles and solid staggered piles
Figure (5-31) The relation between (H_i/L) and (C_d) for different (T) ,angle 30 $^{\circ}$ D= 6 cm for solid piles and solid staggered piles
Figure (5-32) The relation between (H_i/L) and (C_d) for different (T) ,angle 45 $^{\circ}$ D= 6 cm for solid piles and solid staggered piles
Figure (5-33) The relation between (H_i/L) and (C_d) for different (T) ,angle 90 $^{\circ}$ D= 7.5 cm for solid piles and solid staggered piles
Figure (5-34) The relation between (H_i/L) and (C_d) for different (T) ,angle 30 $^{\circ}$ D= 7.5 cm for solid piles and solid staggered piles
Figure (5-35) The relation between (H_i/L) and (C_d) for different (T) , angle 45 $^{\circ}$ D= 7.5 cm For solid piles and solid staggered piles

Figure (5-36) The relation between	en (d/L) and transmission Coefficient (Ct)	94
------------------------------------	--	----

- Figure (5-37) The relation between (H_i/L) and transmission Coefficient (C_t) 95
- Figure (5-38) The relation between (H_i/L) and (C_t) for different (T), ϵ =14% ,angle 90 ° D= 5 cm for perforated piles and perforated staggered piles
- Figure (5-39) The relation between (H_i/L) and (C_t) for different (T), $\epsilon = 14\%$, angle 30°, D= 5 cm for perforated piles and perforated staggered piles
- Figure (5-40) The relation between (H_i/L) and (C_t) for different (T), $\epsilon = 14\%$, angle 45°, D= 5 cm for perforated piles and perforated staggered piles
- Figure (5-41) The relation between (H_i/L) and (C_t) for different (T), ϵ =20% ,angle 90 °, D= 5 cm for solid piles and solid staggered piles
- Figure (5-42) The relation between (H_i/L) and (C_t) for different (T), ϵ =20% ,angle 30 °, D= 5 cm for perforated piles and perforated staggered piles
- Figure (5-43) The relation between (H_i/L) and (C_t) for different (T), $\epsilon = 14\%$, angle 90 °, D= 7.5 cm for perforated piles and perforated staggered piles
- Figure (5-44) The relation between (H_i/L) and (C_t) for different (T), $\varepsilon = 14\%$, angle 30°, D= 7.5 cm for perforated piles and perforated staggered piles
- Figure (5-45) The relation between (H_i/L) and (C_t) for different (T), $\epsilon = 14\%$, angle 45°, D= 7.5 cm for perforated piles and perforated staggered piles
- Figure (5-46) The relation between (H_i/L) and (C_r) for different (T), ϵ =14%, angle 90°, D= 7.5 cm for perforated piles and perforated staggered piles
- Figure (5-47) The relation between (H_i/L) and (C_r) for different (T), $\epsilon = 14\%$, angle 30°, D= 7.5 cm for perforated piles and perforated staggered piles
- Figure (5-48) The relation between (H_i/L) and (C_r) for different (T), ϵ =14%, angle 45°, D= 7.5 cm for perforated piles and perforated staggered piles
- Figure (5-49) The relation between (H_i/L) and (C_d) for different (T), ϵ =14% ,angle 90°, D= 7.5 cm for perforated piles and perforated staggered piles
- Figure (5-50) The relation between (H_i/L) and (C_d) for different (T), $\epsilon = 14\%$, angle 30°, D= 7.5 cm for perforated piles and perforated staggered pile
- Figure (5-51) The relation between (H_i/L) and (C_d) for different (T), ϵ =14% ,angle 45°, D= 7.5 cm for perforated piles and perforated staggered piles
- Figure (5-52) The relation between (d) and (E_t) at (T=1.6 s) ,angle 90°, D= 7.5 cm for solid piles and perforated piles
- Figure (5-53) The relation between (d) and (E_t) at (T=1.1 s) ,angle 90°, D= 5 cm for solid piles and perforated piles

Figure (5.54) The relation between (d) and (E _t) at (T=1.6 s) , α = 45°, D= 5 cm for solid piles and	
perforated piles	110
Figure (5.55) The Excel Sheet	111
Figure (5.56) Analysis tools	113
Figure (5.57) Input range	114
Figure (5.58) Output range	114
Figure (5.59) The relation is comparison between (C_t) at case study (New Gersey)and (C_t) at equation (C_t) and (C_t) at equation (C_t) and (C_t) at equation (C_t) at equation (C_t) and (C_t) at equation (C_t) at equation (C_t) and (C_t) at equation (C_t) at equation (C_t) and (C_t) at equation (C_t) and (C_t) at equation (C_t) and (C_t) at equation (C_t) at equation (C_t) and (C_t) at equation (C_t) at equation (C_t) and (C_t)	ion
for solid piles	116
Figure (6.1) Isometric view to the shoreline change	122
Figure (6.2) Definition for shoreline calculation	122
Figure (6.3) Shoreline changes without breakwater system	124
Figure (6.4) Shoreline change with protection	125
Figure (6.5) Prototype pile shape of the experimental investigation	127
Figure (6.6) Prototype of the Rubble Mound Breakwater	129
Figure (6.7) Reflection coefficient (C _r) in case of piles and rubble mound breakwaters at different	
wave steepness (H_i/L)	133
Figure (6.8) Transmission coefficient (Ct) in case of piles and rubble mound breakwaters at differe	nt
wave steepness (H _i /L)	133