Ropivacaine versus Ropivacaine -Clonidine Combination for Caudal Blockade in Paediatric Patients

Thesis

Submitted for Partial Fulfillment of the M.D. Degree in Anaesthesia

By

ADEL AHMED FAYEK IBRAHIM

M.B., B.Ch., M.Sc., Anaesthesia, Ain Shams University

Supervised By

Professor Doctor Rakia Mohammed Amin Sheir

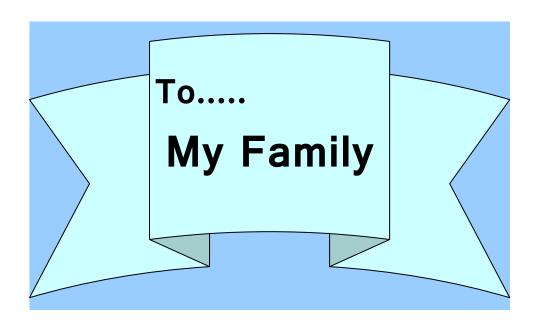
Professor of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Professor Doctor Soheir Abbas Sadik

Professor of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Professor Doctor Azza Mohammed Shafik

Professor of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University


Doctor Sherine Kamal Kodaira

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2005

مِيمِّالَهِ الرَّهُ الرَّمِيمِ هَالُمُ الْمَا عَلْمُ الْمَالِكَ لَا عِلْمَ لَهَا إلاَّ مَا عَلَّمْتَهَا إِنَّكَ انْهَ الْمَا عَلَيْمُ الْمَكِيمُ الْعَلِيمُ الْمَكِيمُ

حَدَى اللَّهُ الْعَظِيمُ سورة البقرة / الآية {32}

Acknowledgement

Thanks God who allowed and helped me to accomplish this work.

I would like to express my sincere appreciation and deep gratitude to Prof. Dr. Rakia Mohammed Amin Sheir, Professor of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her helpful supervision throughout this work. It is really a great honor to work under her guidance and supervision.

My special thanks and appreciation for Prof. Dr. Soheir Abbas Sadik, Professor of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her kind supervision, encouragement and moral support throughout this work.

It gives me a great pleasure to express my deep gratitude to Prof. Dr. Azza Mohammed Shafik, Professor of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her kind advice, valuable instructions and her great effort during this work.

I would also like to thank Dr. Sherine Kamal Kodaira, Lecturer of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her kind help, patience and advice throughout this work.

Adel Ahmed Fayek

CONTENTS

	Title	Page
•	Introduction	1
•	Aim of the Work	3
•	Review of Literature	4
	1- Historical background	4
	2- Embryologic development of the vertebral column and	
	spinal cord	6
	3- Paediatric regional anaesthesia	8
	4- Paediatric caudal blockade	12
	5- Pharmacology of local anaesthetics in infants and	
	children	24
	6- Clonidine.	40
	7- Ropivacaine	51
	8- Paediatric stress response	76
	9- Physiology of pain	81
	Patients and Methods	97
•		107
•	Results	_
•	Discussion	125
•	Conclusion	139
•	Summary	140
•	References	143
•	Arabic Summary	

LIST OF TABLES

No.	Title	Page
1-	Incidence of accidental dural puncture during performance of paediatric caudal block	21
2-	Comparison of mean elimination half-lives (hours) of lidocaine and bupivacaine in paediatric patients	26
3-	Physical properties of lignocaine, ropivacaine and bupivacaine	56
4-	Nerve fiber classification	57
5-	Dosage Recommendations of Ropivacaine	70
6-	Effect of ropivacaine versus bupivacaine on QRS widening	73
7-	Labor and delivery meta-analysis: mode of delivery	74
8-	Preoperative physical status classification of patients according to the American Society of Anaesthesiologists	97
9-	Modified Objective Pain Score (OPS)	102
10-	Sedation Score by Skeie	103
11-	Patient's characteristics and duration of surgical procedures	108
12 -	Distribution of surgical procedures	108
13-	Comparison between the mean heart rate values (beat/minute) for the two groups	109
14-	Comparison between the mean arterial blood pressure values (mmHg) for the two groups	111
15-	Comparison between the mean SpO ₂ (%) values for the two groups	113
16-	Comparison between the mean respiratory rate values (breath/minute) for the two groups	115

LIST OF TABLES (cont.)

No.	Title	Page
17-	Comparison between the duration of sensory blockade in patients required rescue analgesia for the two groups	117
18-	Comparison between the unsupported walking time (minutes) for the two groups	119
19-	Comparison between the time to first micturition (minutes) for the two groups	120
20-	Comparison between the serum cortisol levels (µg/dL) for the two groups	121
21-	Comparison between the serum glucose levels (mg/dL) for the two groups	123

LIST OF FIGURES

No.	Title	Page
1-	Sacral surface anatomy	13
2-	Anatomic variants of sacrum and sacral hiatus	14
3-	Caudal block	16
4-	Prone position for caudal technique	16
5-	Caudal technique	17
6-	Clonidine	41
7-	Ropivacaine	53
8-	Optical isomers of ropivacaine	54
9-	Spinothalamic tract	84
10-	Gate control theory of pain	86
11-	Viewing the GABA receptor from the extracellular space.	89
12-	The GABA _A Receptor Complex	90
13-	Changes in the heart rate (beat/minute) with time for the	
	two groups	110
14-	Changes in the mean arterial blood pressure (mmHg)	446
	with time for the two groups	112
15-	Changes in the SpO ₂ (percent) with time for the two	114
16-	groups Changes in the respiratory rate (breath/minute) with time	114
10-	for the two groups	116
17-	A histogram showing the percentage of patients required	110
	rescue analgesia for the two groups	117
18 -	A histogram showing the average duration of sensory	
	blockade (min) in patients required rescue analgesia for	440
	the two groups	118

LIST OF FIGURES (cont.)

No.	Title	Page
19-	A histogram showing the unsupported walking time (minutes) for the two groups	119
20-	A histogram showing the time to first micturition (minutes) for the two groups	120
21-	A histogram showing the serum cortisol levels (µg/dL) for the two groups	122
22-	A histogram showing the serum glucose levels (mg/dL) for the two groups	123

INTRODUCTION

Caudal blockade is one of the most commonly performed regional anaesthetic techniques in children (Gaufre' et al., 1996). Caudal blockade is usually placed after the induction of general anaesthesia and is used as an adjunct to intraoperative anaesthesia as well as postoperative analgesia in children undergoing surgical procedures below the level of the umbilicus (Ivani et al., 1998). Caudal analgesia can reduce the amount of inhaled and intravenous anaesthetic administration, attenuate the stress response to surgery, facilitate a rapid, smooth recovery, and provide good immediate postoperative analgesia (Tsui et al., 1999).

Ropivacaine, a long-acting amide local anaesthetic related structurally to bupivacaine, has been used for paediatric caudal anaesthesia (*Koinig et al., 1999*). However, ropivacaine allegedly offers a wider margin of safety, less motor blockade, less neuro or cardiotoxicity and similar duration of analgesia in comparison to bupivacaine (*McClure, 1996*). These properties suggest advantages compared with bupivacaine for regional anaestheia and analgesia in the ambulatory setting and recent studies have reported on its efficacy and safety in younger children (*Morton, 2000*).

Clonidine, an α_2 -adrenergic agonist, produces analgesia without significant respiratory depression after systemic, epidural, or intrathecal administration (*Filos et al.*, 1992). Clonidine's analgesic effect is more pronounced after neuraxial injection, which suggests a spinal site of action and makes this route of administration preferable

(Eisenach et al., 1993). Adding clonidine to diluted ropivacaine solutions could potentially enhance analgesia as well as further reduce the risk for unwanted motor blockade (Ivani et al., 2000).

3

AIM OF THE WORK

The aim of the present study was to compare the intraoperative and postoperative pain-relieving quality of a ropivacaine 0.1 % added to clonidine 2 ug/Kg (I ml/Kg), to that of plain ropivacaine 0.2 % (1 ml/Kg) following caudal administration in children.

REVIEW OF LITERATURE

1- HISTORICAL BACKGROUND

In the past two decades, there has been considerable progress in the understanding of infant's and children's perception of pain and responses to pain (*Anand et al.*, 1999). A parallel note-worthy advancement has occurred in the knowledge of anatomy, physiology, and pharmacology of regional anaesthetic techniques in infants and children. Some of these techniques are now an integral part of perioperative and procedure-related pain management in children of all ages (*Dalens*, 1995).

Regional anaesthesia has been used for children since the beginning of the 20th century. Early enthusiasts published accounts of their success with the use of regional anaesthesia in infants and children who were considered poor risk and unfit for general anaesthetics available then (*Sethna and Berde*, 2000).

Paediatric regional anaesthesia was thus used high-risk situations originally in with insufficient understanding of its physiologic and pharmacologic effects. This led to a significant incidence of complications and consequent disfavor (Sethna and Berde, 2000). The advent of safer general anaesthetic agents and techniques in 1950s led to further reluctance in considering regional anaesthesia for children. In the late 1970s, the interest in paediatric regional anaesthesia in the United States was renewed after reintroduction of spinal anaesthesia as a safe alternative to general anaesthesia in high-risk premature infants, and with

the realization that peripheral nerve blocks and epidural single shot injections or infusions provided postoperative analgesia with an excellent safety profile (*Abajian et al.*, 1984).

Wide application and increased experience with regional anaesthetic techniques in children in the last two decades have earned these techniques a central place in paediatric anaesthetic care. As with adults, a major impetus for use of regional anaesthesia is to improve postoperative pain management, to reduce opioid-related side-effects, and to accelerate recovery (*Sethna and Berde*, 2000).

In the adult literature, there are several situations in which prospective studies have shown regional techniques to improve outcome relative to general anaesthesia and systemic analgesics. Controlled outcome studies in children are more limited, though several studies that suggest benefit in clinical outcomes (*Basse et al.*, 2000).

Paediatric regional blockade is frequently used as an adjunct to general anaesthesia or administered as a sole anaesthetic in awake or sedated patients for short peripheral surgical procedures of less than two hours (*Yeager et al.*, 1987). For more extensive procedures, it is now common practice to use general anaesthesia supplemented with continuous epidural infusions of local anaesthetics, either alone or in combination with an opioid or other additives such as clonidine (*Sethna and Berde*, 2000).

Although most of the available regional techniques used in adults have been tried in children, individual technique should be selected for a particular child based on consideration of risks and benefits.