

Productivity improvement and biochemical characterization of xylanase from rice straw by *Trichoderma*.

Presented by

AHMED MOSELHY ARD EL AZIZ MOSELHY

M.Sc. in Microbiology, Helwan University (2009)

THESIS

Submitted for the Philosophy Degree of Doctor in Science in Microbiology

MICROBIOLOGY DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

2016

Ain Shams University Faculty of Science Microbiology Department

Productivity improvement and biochemical characterization of xylanase from rice straw by *Trichoderma* sp.

THESIS

Submitted by

AHMED MOSELHY ABD EL AZIZ MOSELHY

M.Sc. in Microbiology, Helwan University (2009) Researcher Assistant of Microbiology Molecular Biology Department National Research Centre

Submitted for the Philosophy Degree of Doctor in Science in Microbiology

Supervisors

Prof. Dr. AL ZAHRAA AHMED KARAM EL DIN

Professor of Mycology and medical mycology Faculty of Science Ain Shams University

Dr. EINAS HAMED EL SHATOURY

Assistant professor of Microbiology Faculty of Science Ain Shams University

Prof. Dr. MAGDA ABD- ELNABY MOHAMED

Professor of Biochemistry
Head of Molecular Biology Department
National Research Centre

Prof. Dr. ABD EL-HADY MAHMOUD GHAZY

Professor of Biochemistry Molecular Biology Department National Research Centre

2016

Approval sheet

Thesis

Submitted for the Degree of Doctor of Philosophy in Science in Microbiology

Productivity improvement and biochemical characterization of xylanase from rice straw by *Trichoderma* sp.

By: Ahmed Moselhy Abd El Aziz Moselhy

Examining Committee

Prof. Dr. Mohamed El-Sayed Othman

Professor of Mycology, faculty of science, Helwan University

Prof. Dr. El-Sayed Mohamed El-Mahdy

Professor of Biochemistry, faculty of science, Helwan University

Prof. Dr. Al-Zahraa Ahmed Karam El-Din

Professor of Mycology and medical mycology, Faculty of science, Ain Shams University

Prof. Dr. Magda Abd El-Nabi Mohamed

Professor of Biochemistry, National Research Center

ACKNOWLEDGMENTS

I gratefully acknowledge **Prof. Dr. Al Zahraa Ahmed Karam El-Din** for her advice, supervision, and furthermore, using precious times to read this thesis and gave critical comments about it. I am grateful in every possible way and hope to keep up our collaboration in the future.

I would like to record my gratitude to **Prof. Dr.**Magda Abd El-Naby Mohamed Soroor for her supervision, advice and guidance from my first day in my research career in the *National Research Centre* as well as giving me extraordinary experiences throughout the work. Above all and the most needed, she provided me unflinching encouragement and support in various ways. Crucial contribution made her a backbone of this research and so to this thesis. I am indebted to her more than she knows.

I convey special acknowledgement to **Dr. Abd El-Hady Mahmoud Ghazy** for his unselfish and unfailing support as my dissertation adviser and for his

indispensable help dealing with how I could optimally carry out my research and thesis. I could never have embarked and started all of this without his prior support.

Many thanks go in particular to **Ass. Prof. Dr. Einas Hamed El-Shatoury** for her valuable advice discussion during the writing process.

In addition, I would like to acknowledge **Prof. Dr. Abd El-Nasser Khattab,** professor at Genetics and Cytology Department, NRC. I would like to thank him for being the person who taught me new genetically advanced techniques and how to manage the work in the Genetic experiments.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the thesis.

Ahmed Moseshy Abd Es-Aziz

CONTENTS

	1 age
ABSTRACT AND KEY WORDS	Ι
PUBLICATIONS	III
LIST OF FIGURES	IV
LIST OF TABLES	VII
LIST OF ABBREVIATION	IX
AIM OF WORK	XI
CHAPTER I	
REVIEW OF LITERATURE	1
1- Problems of RS	2
2- Management of RS	3
3- Enzyme production	3
4- SSF system for enzyme production	5
5- Biosafty of Trichderma spp.	6
6- Genetic improvement strategy	9
a- Mutation	11
b- Ultraviolet (UV) mutagenesis	12
c- Protoplast fusion	19
7- Cellulase-free xylanase	27
8- The suitability of cellulase-free xylanase for	32
biobleaching	
CHAPTER II	
MATERIALS AND METHODS	35
1- Chemicals	35
2- Microorganisms	36
3- Raw Material	36

4- Alkaline treatment for RS	36
5- Cultivation and culture conditions	37
a- Microbial growth conditions	37
b- Cultivation of the organisms	38
c- Solid state fermentation	38
6- Genetic experiments	39
a- UV-mutagenesis	39
b- The response of isolates to heavy metals	39
c- Protoplast formation and fusion	40
d- Heredity stability studies of fusants	41
7- Buffers	42
8- Determination of protein	42
a- Principle	42
b- Reagents	42
c- Procedures	43
9- Enzyme extraction	43
10- Xylanase enzyme assay	45
a- Principle	45
b- Reagents	46
c- Procedure	46
11- Purification of xylanase	48
a- Ammonium sulphate fractionation	48
b- Sephacryl S-300 column chromatography	48
c- DEAE-Sepharose column chromatography	49
d-Cellulose phosphate column chromatography	49
12- Characterization of the enzymes	50
a- Native-polyacrylamide gel electrophoresis	50
i- Reagents	50
i itensemb	20

ii-Preparation of the continuous 10% gel	51
iii-Sample application	51
iv-Staining of the protein	51
v-Staining of xylanase activity	52
b- Molecular weight determination of enzyme	52
ii- By sodium dodecyl sulphate	
polyacrylamide gel electrophoresis (SDS-	
PAGE)	52
c- pH optimum for activity and stability	57
d- Optimum temperature for activity and	
thermal stability	59
13- Determination of the enzyme mode of action	60
14- Replication	60
15- Equations	61
CHAPTER III	
RESULTS	62
1- Xylanase production by different Trichoderma	
species and strains	62
2- Improvement of T. reesei F418 for enhancing	
xylanase production	65
a- UV-mutagenesis	65
i- Response of WT and some selected	
superior mutants to different heavy metals	66
b- Protoplast fusion and xylanase productivity	68
i-Protoplast formation	68
ii-Evaluation of xylanase production by	
fusant isolates:	74

Crosses C1 to C5	7 4
Crosses C6 to C8	7 4
3- Heredity stability studies of fusants	75
4- Comparison of xylanase production by WT and	
the improved T. reesei F418FS	7 9
i- Xylanase activity level	7 9
ii- Xylanase isoenzyme	7 9
5- Comparison productivity of xylanase by the	
improved T. reesei F418FS and different	
improved microorganisms	79
6- Physiological studies of T. reesei F418FS for	
xylanase production 83	
i- pH optimum for xylanase production 83	
ii- Optimum temperature for xylanase	
production 83	
iii- Optimum moisture content for xylanase	
production 86	
iv- Effect of time course on xylanase	
production 86	
7- Purification of <i>T. reesei</i> F418FS xylanase89	
8- Homogeneity of <i>T. reesei</i> F418FS xylanase	94
9- Characterization of xylanase isoenzyme	94
a- Molecular weight of T. reesei F418FS xylanase	94
b- Effect of pH on T. reesei F418FS xylanase	98
i- pH optimum for activity	98
ii- pH stability	98
c- Effect of temperature on T. reesei F418FS	
xylanase	10
i- Optimum temperature for activity	10

ii- Activation energy	101
iii- Thermal stability	103
iv- Half life time	103
d- Substrate specificity and kinetic properties	107
i- Substrate specificity for T. reesei F418FS	
xylanase	107
ii- Kinetic studies for T. reesei F418FS	
xylanase	107
e- Effect of different activators and inhibitors on	
xylanase isoenzyme	114
i- Effect of EDTA	114
ii- Effect of PMSF	114
iii- Effect of thiol reagents	114
iv- Effect of p -HMB and IAA on xylanase	116
f- Effect of metals on xylanase	116
g- Mechanism of action of xylanase	116
CHAPTER IV	
DISCUSSION AND CONCLUSION	119
CHAPTER V	
ENGLISH SUMMARY	149
CHAPTER VI	
REFERENCES	154
ARABIC SUMMARY	
ARABIC ABSTRACT	

ABSTRACT

Name: Ahmed Moselhy Abd El-Aziz Moselhy.

Title of thesis: Productivity improvement and biochemical characterization of xylanase from rice straw by *Trichoderma*.

Trichoderma reesei F418 has a potential for xylanase production using rice straw (RS) as carbon source under solid state fermentation conditions (SSF). A hyperproducing fused isolate Trichoderma reesei F418FS was obtained after UVmutagenesis followed by intra-specific protoplast fusion. The optimized SSF conditions for maximum xylanase production by T. reesei F418FS (6875 IU/gDW) was achieved at pH 7.0, 35°C and 90% moisture content at the 5thday of incubation. A major xylanase isoenzyme was purified to homogeneity and has molecular weight of 33 kDa, optimum pH at 5.0, stable at pH ranged from 3.5 to 8.0, optimum temperature for activity at 50°C with activation energy (E_a) 22.93 Kcal mol⁻¹ (5.48 KJ mol⁻¹) and stable at temperature up to 70°C. *T. reesei* F418FS xylanase exhibited a high specificity towards xylans with a low activity for cellulosic substrates such as avicel cellulose and carboxymethyl cellulose which concluded that T. reesei F418FS xylanase can be described as a cellulase-free xylanase. The Km values for T. reesei F418FS xylanase are 2.8, 2.65 and 7.7 mg ml⁻¹ for BiWX, BeWX and OSX, respectively. *T. reesei* F418FS xylanase slightly stimulated by monovalent cations K⁺ and Li⁺, inhibited by Hg²⁺ and also inhibited by Cu²⁺, confirmed the presence of at least sulfhydryl group in the active site of the enzyme. The inhibitory effect of EDTA suggested that *T. reesei* F418FS xylanase is a metalloprotein. *T. reesei* F418FS xylanase can be described as an acidic cellulase-free xylanase, has a possible application in biobleaching in paper and pulp industry.

Key Words:

Xylanase, *Trichoderma reesei*, UV-mutagenesis, intraspecific protoplast fusion, rice straw, agroindustrial waste, purification and characterization.

PUBLICATIONS

Magda A.M. Soroor, Hoda H. El Hendawy, Abd-Elhady M. Ghazy, Nermeen A. El Semary, Kamal M.A. Khalil, Ahmed M. Abd El Aziz (2009). Characterization of an Alkaline Metalloprotease Secreted by the Entomopathogenic Bacterium *Photorhabdus Sp.* Strain EK1. Research Journal of Agriculture and Biological Science, 5(4): 349-360.

Magda A.M. Soroor, Abd El-Hady M. Ghazy and Ahmed M. Abd El-Aziz (2013). Proteolytic Enzymes Secreted by the Bacterium *Photorhabdus sp.* strain EK1, Symbionts to *Heterorhabditis bacteriophora* EK1. Journal of Applied Sciences Research, 9(8): 4683-4694.

Magda A. M. Soroor, Abd El-hady M. Ghazy, Khattab A. A., Ahmed M. Abd El-Aziz, Einas H. El- Shatoury, Al Zahraa A. Karam El-Din (2014). Enhancement of xylanase production from rice straw by *Trichoderma reesei* through UV- mutagenesis and protoplast fusion. Egyptian Journal of Experimental Biology, 10(2): 125-134.

LIST OF FIGURES

Figures		Page
Fig. 1	Trichoderma reesei	10
Fig. 2	Diagram of different wavelengths of different types of rays including ultraviolet.	14
Fig. 3	Thymin dimer formed of a cyclobutane ring between adjacent thymines dut to ultraviolet radiation exposure	
Fig. 4	Lignin associated hemicelluloses fraction removed from pulp structure by the action of cellulase-free xylanase.	
Fig. 5	Standard curve for protein using bovine serum albumin as a standard.	44
Fig. 6	Standard curve of xylose	47
Fig. 7	Calibration curve for xylanase isoenzyme molecular weight determination by SDS polyacrylamide gel electrophoresis.	
Fig. 8	Photomicrographs of protoplast formation	73
Fig. 9	Xylanase production from untreated and alkali pretreated RS using the WT and improved <i>T. reesei</i> F418FS	
Fig. 10	Isoenzyme pattern of xylanase isoenzymes from WT and fused <i>T. ressei</i> F418 strain using non-denaturing	

	PAGE
Fig. 11	Optimal pH for <i>T. reesei</i> F418FS xylanase production by alkali pretreated RS under SSF
Fig. 12	Optimal temperature for <i>T. reesei</i> F418FS xylanase production by alkali pretreated RS under SSF
Fig. 13	Optimal moisture content for <i>T. reesei</i> F418FS xylanase production by alkali pretreated RS under SSF
Fig. 14	Effect of time course on xylanase production by <i>T. reesei</i> F418FS using alkali pretreated RS under SSF
Fig. 15	A typical elution profile for the chromatography of pooled active of ammonium sulfate fraction on Sephacryl S-300
Fig. 16	A typical elution profile for the chromatography of pooled active fractions of Sephacryl S-300 of <i>T. reesei</i> xylanase on DEAE- Sepharose column
Fig. 17	A typical elution profile for the chromatography of pooled active fractions of DEAE-Sepharose of <i>T. reesei</i> xylanase on cellulose-phosphate column
Fig. 18	Native-PAGE for <i>T. reesei</i> F418FS xylanase isoenzyme
Fig. 19	SDS-PAGE for molecular weight determination of <i>T. reesei</i> F418FS xylanase isoenzyme