The Effect of Laparoscopic Cystectomy on Ovarian Reserve in Patients with Endometrioma

Thesis

Submitted for Partial Fulfillment of Master Degree In **Obstetrics & Gynecolog**y

By

Mai Nessim Abd El Aziz

M.B., B.Ch.

Supervised by

Prof. Dr. Mohamed Abd Allah El Maraghy

Professor of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Dr. kareem Mohamed Labib

Lecturer of Obstetrics & Gynecology Faculty of Medicine - Ain Shams University

Dr. Neama Lotfy Mohamed

Lecturer of Clinical pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2015

سورة البقرة الآية: ٣٢

First and foremost, I feel always indepted to Allah, the most merciful, who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude to **Dr. Mohamed Abd-Allah El maraghy**, Professor of obstetrics and gynecology, faculty of medicine — Ain shams University, for his sincere help, constant encouragement, constructive criticism, and valuable guidance, I was truly honoured to work under his supervision.

I wish also to express my great gratitude and utmost appreciation to **Dr. Kareem Mohamed Labib**, lecturer of obstetrics and gynecology, faculty of medicine — Ain shams university, for his valuable suggestions, precious assistance and scientific instructions during the progress of this work.

I also would like to express thankfulness and gratitude to **Dr.**Neama Lotfi Mohamed, lecturer of clinical Pathology, faculty of medicine — Ain shams University, for her help, encouragement, scientific supervision, assistance and giddiness.

I can't forget to thank all surgeons and members of obstetrics and Gynecology department, faculty of medicine —Ain shams University, for their patience and help to complete our research.

I owe special thanks to **my family** for their care, patience and continuous encouragement.

Mai Nessim Abd Al Aziz

Contents

Subjects	Page
1. List of Abbreviations	I
2. List of Tables	III
3. List of Figures	V
4. Abstract	IX
5. Introduction	1
6. Aim of the work	6
7. Review of literature	
1. Chapter (1): Endometriosis	7
2. Chapter (2): Enometrioma	46
3. Chapter (3): Ovarian reserve	74
4. Patients and Methods	113
5. Results	123
6. Discussion	141
7. Summary & Conclusion	151
8. Recommendations	156
9. References	157
10. Arabic summary	

List of Abbreviations

AFC: Antral follicular count

AFS: American Fertility Society

AMH : Anti-Mullerian Hormone

AMHRII: Anti-Mullerian hormone receptor type II

ART : Assisted reproductive technologies

ASRM: American Society for Reproductive Medicine

BMD: Bone mineral density

BMps : Bone morphogenic proteins

CA 19-9 : Cancer Antigen 19-9

CA125 : Cancer Antigen 125

CC : Clomiphene citrate

CCCT : Clomiphene citrate challenge test

COC : Combined oral contraceptive

COX-1 : Cyclo-oxgenase-1

COX-2 : Cyclo-oxygenase-2

E2 : Estradiol hormone

FSH : Follicle stimulating hormone

GAST : Gonadotropin analogue stimulation test

GC : Granulosa cell

GCs : Granulosa cells

GLSs : Granulosa luteal cells

GnRH : Gonadotropin-releasing hormone

HCG: Human chorionic gonadotropin

HRT: Hormonal replacement therapy

E List of Abbreviations &

ICSI : Intracytoplasmic sperm injection

IVF : In-vitro fertilization

IVM: In vitro maturation

LH : Lutinizing hormone

LUNA : Laparoscopic uterine nerve ablation

MCL: Menstrual cycle length

MOD : Mean ovarian determinant

MPA : Medroxyprogesterone acetate

MRI : Magnetic resonance imaging

Oc : Oral contraceptives

OR : Ovarian reserve

PCOS : Polycystic ovarian syndrome

PGE2 : Prostaglandin E2

rFSH : Recombinant Follicle stimulating hormone

SD : Standard deviation

SHBG: Sex hormone binding globulin

SPRMs: Selective progesterone receptor modulators

TAFC: Total antral follicular count

TGF: Transforming growth factor

TGF-B: Transforming growth factor beta

TNF: Tumor necrotizing factor

TVS: Transvaginal ultrasound

US : Ultrasound

List of tables (for Review)

Table No	Title	Page
Table (1)	Comparison of the different physical tools to assess ovarian reserve.	83
Table (2)	Ranges of AMH.	95
Table (3)	Static tests for OR.	101
Table (4)	Dynamic tests for ovarian reserve.	112

List of tables (for Results)

Table No	Title	Page
Table (1)	Kolmogorov-Smirnov Test of Normality	123
	for Measured Variables.	
Table (2)	Demographic Data of Included Women.	124
Table (3)	Preoperative Measurements of Ovarian	127
	Reserve in Included Women.	
Table (4)	Dimensions, Laterality of	128
	Endometriomas and ASRM Class of	
	Included Women.	
Table (5)	Postoperative Measurements of Ovarian	131
	Reserve in Included Women.	
Table (6)	Difference between Pre- and Post-	132
	operative Measurements of Ovarian	
	Reserve in Included Women.	
Table (7)	Difference between Pre- and Post-	138
	operative AFC and Serum AMH in	
	Included Women.	
Table (8)	Association between Characteristics of	140
	Included Women and Postoperative	
	DOR.	

List of Figures (for Review)

Figure No	Title	Page
Fig. (1)	American society for reproductive	14
	Medicine revised classification of	
	endometriosis (ASRM).	
Fig. (2)	Pelvic localization of endometriosis.	15
Fig. (3)	MRI of endometriosis of the right utero	29
	sacral ligament.	
Fig. (4)	Laparoscopic appearance of	30
	endometriosis.	
Fig. (5)	Atypical endometriosis.	31
Fig. (6)	Severe endometriosis at laparoscopy	33
	showing Chocolate cyst.	
Fig. (7)	Role of COX-2 and aromatase in a	35
	persistent endometriotic state.	
Fig. (8)	Transvaginal ultrasound image of the	49
	right adenexa showing an endometrioma	
	of the right ovary.	
Fig. (9)	Laparoscopy technique.	56
Fig. (10)	Laparoscopic management of	60
	endometrioma using a combined	
	technique of excisional (cystectomy) and	
	ablative surgery.	

🕏 List of Figures 🗷

Figure No	Title	Page
Fig. (11)	Model of ovarian reserve from	75
	conception to the menopause.	
Fig. (12)	AMH concentration in GC anf follicular	94
	fluid from normal ovaries.	
Fig. (13)	AMH as regulator of normal follicle	98
	growth and development.	
Fig. (14)	Model of AMH action in the ovary.	101
Fig. (15)	Serum AMH levels in normoovulatory	103
	women.	

List of Figures (for Results)

Figure No	Title	Page
Fig. (1)	Bar-Chart showing Age Distribution in	124
	Included Women.	
Fig. (2)	Bar-Chart showing Weight Distribution	125
	in Included Women.	
Fig. (3)	Bar-Chart showing BMI Distribution in	125
	Included Women.	
Fig. (4)	Pie-Chart showing Parity Distribution in	126
	Included Women.	
Fig. (5)	Pie-Chart showing Laterality of	129
	Endometriomas in Included Women.	
Fig. (6)	Pie-Chart showing the ASRM Class of	130
	Included Women.	
Fig. (7)	Box-Plot Chart showing Difference	133
	between Pre- and Post-operative AFC in	
	Included Women.	
Fig. (8)	Box-Plot Chart showing Difference	134
	between Pre- and Post-operative Serum	
	AMH in Included Women.	

🕏 List of Figures 🗷

Figure No	Title	Page
Fig. (9)	Box-Plot Chart showing Difference	135
	between Pre- and Post-operative Serum	
	FSH in Included Women.	
Fig. (10)	10 Box-Plot Chart showing Difference	136
	between Pre- and Post-operative Serum	
	E2 in Included Women.	
Fig. (11)	Box-Plot Chart showing Difference	137
	between Pre- and Post-operative Serum	
	E2:FSH Ratio in Included Women.	
Fig. (12)	Bar-Chart showing Difference between	139
	Pre- and Post-operative AFC in Included	
	Women.	
Fig. (13)	Bar-Chart showing Difference between	139
	Pre- and Post-operative Serum AMH in	
	Included Women.	

Abstract

Endometriosis is an important disease that affects monthly fecundity rate or the success of the assisted reproductive technologies (ART). The prevalence of endometriosis is approximately 6-8%, and it is usually diagnosed during laparoscopic surgery for the evaluation of pelvic painj. The prevalence of endometriosis is higher among infertile women than fertile. Of the surgical population, endometriosis was diagnosed in 25% of women who had a laparoscopy for pelvic pain and in 20% of women who underwent surgery for infertility.

Endometriosis is one of the most commonly encountered diagnoses in ovarian surgery and may be present in up to 17-44% of patients with endometriosis. Ovarian endometriomas are usually associated with the symptoms of dysmenorrhea, chronic pelvis pain, dyspareunia, and infertility. Previous studies have demonstrated that endometriomas can negatively affect the rate of spontaneous ovulation, as well as reducing the amount of follicular number and activity in the adjacent ovarian tissues.

Theraputic approach for women with ovarian endometrioma may vary according to the age of women, size of the cyst, symptoms, and desire for the future conception. Laparoscopic cystectomy for endometrioma is common and seems to be feasible in terms of post-operative fecundability and recurrence rate compared with that of fenestration and coagulation of the cyst wall. However, the safety of this technique with respect to residual ovarian damage has been questioned.

Key words

Endometriosis
Ovarian endometriomas
Laparoscopic cystectomy
Ovarian reserve

Introduction

Endometriosis refers to the presence of endometrial glands and stroma outside the uterine cavity, most commonly on the membrane which line the abdominal cavity, the peritoneum. The uterine cavity is lined with endometrial cells which under the influence of female hormones. Endometrial cells in areas outside the uterus are also affected by hormonal changes and respond in a way that is similar to the cells found inside the uterus. It is a common gynaecological condition, often presenting with pelvic pain and infertility. The pain often is worse with the menstrual cycle and is the most common cause of secondary dysmenorrhea. Endometriosis was first identified by Baron Carl von Rokitansky in 1860 (*Batt and Ronald*, 2011).

Endometrioma is the formation of ovarian cyst lined by the endometrial glands and stroma; it is surrounded by psudocapsule adjacent to healthy ovarian tissue. It accounts for 17%-44% of patients with endometriosis (*Nicolle and Donnez*, 1997).

Different theories implicated in the pathogenesis of endometriosis indicate that the etiology of endometriosis is complex and multifactorial, involving: Retrograde menstruation theory of Sampson: this is the oldest principle explaining the etiology of endometriosis. The theory propsoses that endometriosis occurs due to the retrograde flow of sloughed endometrial cells/debris via the fallopian tubes into the pelvic cavity during menstruation. However, retrograde menstruation occurs in 76%-90% of women with patent fallopian tubes and not all of these women have endometriosis (*Sasson and Taylor*, 2008).

Dysfunction: The regurgitation Immune of endometrial cells into the peritoneum triggers an inflammatory response recruiting activated macrophages and leucocytes locally which may cause defective "immune-survillance" that prevents elimination menstrual debris and promotes the implantation and growth of endometrial cells in the ectopic sites (Donnez et al., 2013).

Metaplasia: Other theories have proposed that endometriosis originates from extrauterine cells that abnormally transdifferentiate into endometrial cells. The coelomic metaplasia theory pustulates that the endometriosis originates from the metaplasia of specialized