Anesthesia and intensive care in cases of major burn

Essay bmitted in partial fulfillment of

Submitted in partial fulfillment of Master Degree in Anesthesiology

By

Amr Mohamed Ashour Gebril (M.B.B.Ch.,)

Faculty of Medicine-Menoufia University

Under supervision of

Prof. Dr.

Bahaa El-Din Ewis Hassan

Professor of Anesthesiology & I.C.U Faculty of medicine - Ain Shams University

Dr.

Walid Ahmed Abd El-Rahman Mansour

Lecturer of Anesthesiology & I.C.U Faculty of Medicine - Ain Shams University

Dr

Dina Salah El-Din Mahmoud

Lecturer of Anesthesiology & I.C.U Faculty of Medicine - Ain Shams University

Ain Shams University

2016

Aim of the work

The aim of this work is to review and summarize anesthetic, pain and intensive care consideration in a case of major burn.

Content

	Page
Introduction	1
Chapter 1: Classification & Pathophysiology Of Burn	3
Chapter 2 : Perioperative Management	35
Chapter 3 : Pain Management	74
Chapter 4: Burn Care, Fluid And Nutritional Management.	95
Summary	112
References	115
Arabic Summary	

التخدير والعناية المركزة في حالات الحروق الكبري

توطئة للحصول على درجة الماجستير بواسطة

طبيب/ عمر و محمد عاشور جبريل بكالوريوس الطب و الجراحة -جامعة المنوفية

تحت إشراف

أد. ابهاء الدين عويس حسن أستاذ التخدير والرعاية المركزة كلية الطب - جامعة عين شمس

د. اوليد أحمد عبد الرحمن منصور مدرس التخدير والرعاية المركزة كلية الطب - جامعة عين شمس

د. دينا صلاح الدين محمود مدرس التخدير والرعاية المركزة كلية الطب - جامعة عين شمس

جامعة عين شمس ٢٠١٦

List of Figures

No.	Title		
Figure 2	Cross-sections of burned skin	5	
Figure 2	burn size in adult and child body		
Figure 2b	burn size in children	7	
Figure 3	Jackson's burns zones and the effects of	9	
	adequate and inadequate resuscitation		
Figure 4	Systemic response to burn	10	
Figure 5	Metabolic changes underlying insulin	15	
	resistance post-burn		
Figure 6	Comparison of pressure Vs time tracings for	32	
	CMV and HFOV		
Figure 7	Intraosseous needle placement. Insert needle	34	
	at the level of tibial tubercle on the medial		
	portion of the tibia. The needle is aimed		
	carefully and laterally		
Figure 8	Schematic drawing of event leading to the	54	
	initiation, development and maintenance of		
	pain following burn injury		
Figure 9	Visual analogue scale	56	
Figure 10	Numerical pain scale	57	
Figure 11	Wong-Baker faces pain rating scale	57	
Figure 12	Chemical structures of antibiotics used in	83	
	topical antimicrobial therapy of burns		

List of Tables

No.	Title	Page
Table 1	Classification of burn by depth	4
Table 2	American burn association burn injury severity grading system	8
Table 3	Pathophysiologic Changes During Early and Late Phases of Major Burn Injury	12
Table 4	Symptoms and Signs of Smoke Exposure and Inhalation Injury	15
Table 5	Carbon monoxide levels and toxicity	17
Table 6	Indications for intubation and mechanical ventilation following burns	24
Table 7	Indications for mechanical ventilation	28
Table 8	Burn resuscitation forumlas past and new	37
Table 9	Acute biochemical and hematologic changes during resuscitation	38
Table 10	Adult nonverbal scale	58
Table 11	Behavioral pain scale	59
Table 12	Critical-care pain observation	60
Table 13	Best predictive equations according to the burn literature	76
Table 14	Harris-Benedict formula	76
Table 15	Suggested micronutrients	79

List of Abbreviations

$2^{ry}TA$	Secondary Tactile Allodynia				
\overline{ABG}	Arterial Blood Gas				
ACS	Acute Coronary Syndrome				
AIDS	Acquired Immune Deficiency Syndrome				
ALI	Acute Lung Injury				
APRV	Airway Pressure Release Ventilation				
ARDS	Respiratory Distress Syndrome				
ATP	Adenosine Triphosphate				
BEE	Basal Energy Expenditure				
BSA	Body Surface Area				
BSA	Body Surface Area				
BSA	Body Surface Area;				
BSAB:	Percentage Of Total Body Surface Area Burn				
СНО	Carbohydrate				
CMV	Convential Mechanical Ventilation				
CNS	Central Nervous System				
CNS	Central Nervous System				
CO	Carbon Monoxide				
CO	Carbon Monoxide;				
CO-Hb	Carboxyhaemoglobin				
COX	Cyclo-Oxygenase				
CRP	C-Reactive Protein				
Си	Copper				
CVP	Central Venous Pressure				
D_5W	Dextrose 5% In Water				
DIC	Disseminated Intravascular Coagulopathy				
DVT	Deep Venous Thrombosis				
e.g.	Example				
EA	Emrgence Agitation				
ECG	Electrocardiogram				
ЕСМО	Extracorporeal Membrane Oxygenation				
ED	Emergency Department				
EMLA	Prilocaine-Lidocaine Cream				
etc.	Extra				
EtCO2	End-Tidal Carbon Dioxide				
ETTs	Cuffed Endotracheal Tubes				
Fe	Iron				
Fe_2	Ferrous Iron				

FFA	Of Free Fatty Acids				
FFP	Fresh Frozen Plasma				
Fio_2	Fraction Of Inspired Oxygen;				
FLACC	Face ,Leg ,Activity ,Cry ,Consolability Scale				
g/dL	Gram Per Deciliter				
H^2O^2	Hydrogen Peroxide				
HDL	High Density Lipoprotien				
HFOV	High-Frequency Oscillatory Ventilation				
HFPV	High Frequency Percussive Ventilation				
HIV	Human Immune Deficiency Virus				
HNA	N-Acetylcysteine/Albuterol Nebulisation				
HR	Heart Rate				
HSP-70	Heat Shock Protein				
HTN	Hypertension				
Нх	History Of				
ICU	Intensive Care Unit				
IL	Interleukin				
IV	Intravenous				
kcal/kg/d	Kilo Calories Per Kilogram Per Day				
LBM	Lean Body Mass				
LBM	Lean Body Mass				
LPL	Low Density Lipoprotien				
LR	Lactate Ringer				
LTV	Conventional Low-Tidal Volume Ventilation				
M^2	Meter Square				
MAOI	Monoamine Oxidase Inhibitor				
mcg/kg	Microgram Per Kilogram				
MCP	Monocyte Chemotactic Protein				
mEq/l	Mille Equivalent Per Liter				
mg/kg	Milligram Per Kilogram				
MIF	Maximum Inspiratory Force;				
MW	Maximum Voluntary Ventilation;				
NMDA	N-Methyl-D-Aspartate Receptor				
NO	Nitric Oxide				
NPE:N ratio	The Nonprotein Kcalorie To Nitrogen Ratio				
NSAIDs	Non-Steroidal Anti-Inflammatory Drugs				
NVPS	Adult Non-Verbal Scale				
<i>O</i> 2	Oxygen				
O^{2-}	Superoxide Anion				

ОН	Hydroxyl Ion			
OIH	Opiate Induced Hyperalgesia			
$P(A-a)O_2$	Alveolar-To-Arterial Po2 Gradient;			
PA	Pulmonary Artery			
Paco ₂	Arterial Carbon Dioxide Tension;			
PACU	Post Anaesthesia Care Unit			
PACO	Partial Pressure Of Oxygen In Arterial Blood			
P_ao_2/FiO_2	Ratio Of Alveolar Po, To Inspired 0 ₂			
P_aO_2/FiO_2	Ratio Of Arterial PO ₂ To Inspired O ₂			
Pc	Capillary Pressure			
PCA	· ·			
PE	Patient-Controlled Analgesia			
	Pulmonary Embolus Positive End Evaluatory Processor			
PEEP	Positive End-Expiratory Pressure			
PEG	Prostoplandin E2			
PGE2	Prostaglandin E2			
PGI2	Prostacyclin			
P_{high}	High Continuous Airway Pressure			
P_{low}	Lowerset Continuous Airway Pressure			
PRBC	Packed Red Blood Cell			
PTSD	Posttraumatic Stress Disorder			
PTSD	Post-Traumatic Stress Disorder			
Q_s/Q_t	Intrapulmonary Right-To-Left Shunt Fraction			
RDA	Recommended Dietary Allowances			
REE	Resting Energy Expenditure			
RR	Respiratory Rate			
RWMAs	Regional Wall Motion Abnormalities			
SBP	Systolic Blood Pressure			
Se	Selenium			
SIRS	Systemic Inflammatory Response Syndrome			
SpO_2	Pulse Oximetry			
SSRI	Selective Serotonin Reuptake Inhibitors			
SVR	Systemic Vascular Resistance			
TB	Tuberculosis			
TBSA	Total Body Surface Area			
Tds	Twice Daily			
TNF	Tumor Necrosis Factor			
TNF	Tumor Necrosis Factor			
TOF	Triad Of Four			
TXA2	Thromboxane A2			
TXB2	Thromboxane B2			

VAS	Visual Analogue Scale
VBG	Venous Blood Gas
VC	Vital Capacity
V_E	V _E Minute Ventilation .
VLDL	Very-Low-Density Lipoprotein
V_n/V_T	Dead Space Fraction;
WOB	Work Of Breathing
Zn	Zinc

ACKNOWLEDGEMENTS

First and foremost, this work owes its existence to God, the most kind and merciful. Words are too limited and will never be able to express my deep gratitude to all who helped me during the preparation of this study.

I gratefully acknowledge the sincere advice and guidance of **Prof. Dr. Bahaa El-Din Ewis Hassan** Professor of Anaesthesiology & I.C.U, Faculty of Medicine, Ain-Shams University, for his kind supervision, professional suggestions, unlimited support and patience, persuit for perfection and meticulous revision of every possible detail. He has spared no effort, at any time, in helping me. Really, I was fortunate to carry out this work under her supervision. Also I must thank him for helping me in my career as he taught me how to be a real man and a dependable person.

I am greatly honored to express my sincere appreciation to **Dr. Walid Ahmed Abd El-Rahman Mansour**, Lecturer of Anaesthesiology & I.C.U, Faculty of Medicine, Cairo University, for his valuable advice, continuous encouragement, moral support, constructive direction and indispensable guidance.

My acknowledgment will not be completed without expressing my respectful thanks and gratitude to **Dr. Dina Salah El-Din Mahmoud**, Lecturer of Anaesthesiology & I.C.U, Faculty of Medicine, Cairo University, for her continuous & informative help, kind & supportive guidance, valuable facilities, unlimited time and effort offered to me during this study.

Last but not least, I owe a particular dept of gratitude to my parents, who taught me how to walk in the path of knowledge with steady steps, and took on thier own to support these steps allthrough the way; and to whom I dedicate this work.

Introduction

The skin is the largest organ of the human body, and it plays a very important role in physiology and the maintenance of body homeostasis. A large burn can alter the ability of almost all of the body's organs and significantly increase the patient's risk for infection (*Purdue et al, 2002*).

Burns are among the most devastating injuries encountered in medicine and are a leading cause of life-threatening trauma worldwide. The risk of death from burn injury increases with advancing age, increasing burn size, and the presence of inhalation injury. Up to 30% of burn injuries sustained each year are considered major burn injuries, characterized by burns to over 20% of total body surface area (TBSA) in adults, more than 10% TBSA in children and elderly patients, or full thickness burns to >5% TBSA. Burns involving the face, airway, or genitalia are also classified as major burn injuries regardless of the percentage of TBSA affected (*Harbin and Norri*, 2012).

A better understanding of the pathophysiology of burn injuries, coupled with advances in burn resuscitation, critical care, and surgical practice, has resulted in improved survival in severely burned patients over the past 3 decades (*Zhou et al*, 2002). Severe burn injures causes extensive physiologic changes. Changes begin when significant tissue trauma leads to widespread release of both local and systemic inflammatory mediators. Which cause an increase in systemic and pulmonary vascular resistance. The vasoconstriction increases afterload and contributes to decreased cardiac output. This vasoconstriction results in decreased flow to vascular beds that are already underperfused. Tissue ischemia and secondary organ injury can result (*Charles et al*, 2011).

Modern care for the severly burned patient can be divided into four overlapping phases: (1) initial evaluation and resuscitation, (2)

initial excision and biological closure, (3) rehabilitation and reconstruction. The anaesthesiologist's services may be called on for airway management, intravenous access, and fluid resuscitation, in addition to providing sedation and analgesia in acute phase. Administration of analgesia and sedation for wound care and provision of anaesthesia for excision and grafting are even more challenging tasks. Reconstructive surgery poses special challenges because of the development of contractures, making airway management and positioning difficult (*Lee Fleisher*, 2012).

Pain after burn injuries is one of the most severe forms of acute pain. Although wound and pain management have gradually improved over the last years, a sufficient pain management after severe burn trauma is still a global problem and a major challenge for the health care personnel. An adequate analgesia helps reducing complications and cause faster healing (*Jeschke et al*, 2012).

Classification of burn

Burns are classified according to depth & drgree, according to the cause or according to burn size (*Heimbach et al*, 2002).

a) Burn classified by depth & degree :-

The old classification of burn according to depth and degree is the four-part classification which classify burn into first, second, third and fourth degree burn, for details see (table 1) (*Heimbach et al*, 2002).

The four-part classification has been replaced by the new system that classifies burns as either superficial, partial-thickness or full-thickness burn injury (fig. 1). This classification is important for patients once they are in a burn centre and less important when they are in the emergency rooms because the clinical appearance of the wounds changes over the first 3-5 days post injury. Clinical classification of burn depth in the hands of experienced burn clinicians has a poor predictive value and is only 70% accurate at best (*Davidge and Fish*, 2008).

Newer modalities for the evaluation of depth of injury are being used in many centers with various degrees of benefit (e.g., laser flow Doppler, etc.) (*Riordan et al, 2003*). laser Doppler imaging is the only technique that has been shown to accurately predict wound outcome with a large weight of evidence. Moreover this technique has been approved for burn depth assessment (*Sheridan 2008*).

Table1: Classification of burn by depth

Classification	Burn depth	Appearance	Sensation	Outcome
Superficial				
First degree	Confined to epidermis	Dry and red; blanches	Painful	Heals spontaneously
Partial thickness				
Second degree				
Superficial dermal	Epidermis and upper dermis	Blisters; moist, red and weeping; blanches	Painful to air and temperature	Heals spontaneously
Deep dermal	Epidermis and deep dermis	Blisters; wet or waxy dry; patchy to cheesy white to red; does not blanch	Pressure only	Requires excision and grafting for return of function
Full thickness				
Third degree	Destructio n of epidermis and dermis	Waxy white, leathery gray or charred and black; dry and inelastic; does not blanch	Deep pressure only	Requires complete excision; limited function
Fourth degree	Muscle, fascia, bone		Deep pressure only	Requires excision and grafting; limited function.

(Morgan et al , 2000)