

"UPGRADING OF TITANIUM BEARING ORE"

A Thesis

"Submitted for the degree of Master of Science as a partial fulfillment for requirements of the master of Science"

CHEMISTRY DEPARTMENT, FACULTY OF SCIENCE AIN SHAMS UNIVERSITY, 2016

Presented by,
WALEED MAHMOUD ABOU ELHAMD
BSc. 2001, South Valley University

A CONTRIBUTION FROM NUCLEAR MATERIALS AUTHORITY

Under Supervision of

Prof.Dr.
Taysser Abd El Samei Lasheen
Professor of Inorganic
Chemistry,
Research Sector,

Nuclear Materials Authority, Arab Republic of Egypt. Prof. Dr.

Ebtissam Ahmed Saad Professor of Inorganic

and Radio Chemistry, Chemistry Department, Faculty of Science,

Ain Shams University.

Prof. Dr. Mohamad El Menshawi Shalabi

Professor of Chemical Engineering, Central Metallurgical Research and Development Institute.

Thesis M.Sc. degree in Chemistry

Name: Waleed Mahmoud Abou Elhamd.

Thesis title: Upgrading of Titanium Bearing Ore.

Degree: M.Sc. degree in Chemistry.

<u>Under Supervision of:</u>

Prof. Dr. / Ebtissam Ahmed Saad

Professor of Inorganic and Radio Chemistry,

Chemistry Department, Faculty of Science, Ain Shams University.

Prof.Dr. / Taysser Abd El Samea Lasheen

Professor of Inorganic Chemistry,

Nuclear Materials Authority, Egypt.

Prof. Dr. / Mohamad El Menshawi Shalabi

Professor of Chemical Engineering,

Central Metallurgical Research and Development Institute.

Head of Chemistry Department

Prof. Dr. / Hamed Ahmed Younes

ACKNOWLEDGEMENT

The author wishes to express his deep thanks and gratitude to **Prof. Dr. Ebtissam Ahmed Saad**, professor of Inorganic and Radio Chemistry, faculty of Science, Ain Shams University for her supervision and guidance.

My deep thanks for **Prof. Dr. Taysser Abdel-Samei Ibrahim,** Professor of Inorganic Chemistry, Head of
Major Elements Measurement Laboratory, Nuclear
Materials Authority for the planning, helping and
supervision until finish this work.

Deep thanks for **Prof. Dr. Shalabi M. E. H.** professor of chemical engineering, Central Metallurogical Research and Development Institute for continuous guidance and helpful advices.

STATEMENT

In addition to the work carried out in this thesis, the candidate, Waleed Mahmoud Abo-Elhamd has attended post-graduate studies for the partial fulfillment of the M. Sc. Degree in the following topics:

- 1. Advanced Inorganic Chemistry
- 2. Computer in Chemistry
- 3. Electrochemistry
- 4. Chromatography and Ion Exchange
- 5. Solvent Extraction
- 6. Instrumental Analysis
- 7. Spectroscopic Application of Group Theory
- 8. Nuclear Chemistry and its Application
- 9. Organometallic Compounds
- 10. Polarography and Voltammetry
- 11. Molecular spectroscopy
- 12. English Language

He successfully passed an examination in the above mentioned courses.

Abbreviations

S.	Abbreviations	Term
1.	L/S	Liquid/Solid
2.	M	Molar
3.	h	Hour
4.	оС	Temperature (centigrade)
5.	%	Percent
6.	XRD	X-ray
7.	kg	Kilogram
8.	wt.	Weight
9.	EDTA	Ethylene Diamine Tetra
		Acetic acid
10.	UV	Ultra Violet
11.	nm	Nano meter
12.	fig.	Figure
13.	rpm	Round per minute
14.	ml	Milliliter
15.	min.	Minute
16.	w/w	Weight / weight

CONTENTS

Title	Pages
CONTENTS	01
LIST OF TABLES	05
LIST OF FIGURES	08
ABSTRACT	11
AIM OF WORK	12
INTRODUCTION	13
CHAPTER I: A LITERATURE REVIEW	21
I.1 Processing of ilmenite ore	23
I.2 Manufacture of titania slag	24
I.3 Synthetic rutile production	31
I.3.1Pyro-/electro-metallurgical techniques	31
I.3.2 Pyro-metallurgical techniques	31
I.3.3 Pyro-hydrometallurgical techniques-	35
I.3.4 Hydrometallurgical techniques	39

Title	Pages
I.4 Preparation of titanium dioxide	43
CHAPTER II: EXPERIMENTAL	51
II.1 Materials	51
II.1.1 Chemicals and reagents	51
II.1.2 Ores under study	51
II.1.3 Characteristics of Rosetta ilmenite concentrate and titania slag	57
II.2 Procedures	61
II.2.1 Leaching Procedures	61
II.3 Analysis control	62
CHAPTER III: RESULTS AND DISCUSSION	64
III.1 Leaching of titania slag using diluted sulfuric acid (8-11 Molarity)	65
III.1.1 Effect of reaction temperature	65
III.1.2 Effect of Liquid/Solid ratio	67
III.1.3 Effect of reaction time	69
III.1.4 Effect of acid concentration	71

Title	Pages
III.2 Leaching of titania slag using severe	74
conditions	
III.2.1 Effect of the grain size	74
III.2.2 Effect of acid concentration	76
III.2.3 Effect of liquid/solid (L/S) ratio	78
III.2.4 Effect of reaction temperature	80
III.2.5 Effect of reaction time	83
III.3 Leaching of ilmenite / titania slag	86
mixture	
III.3.1 Effect of ilmenite/titania slag	86
ratio	
III.3.2 Effect of the sulfuric acid	89
concentration	
III.3.3 Effect of the Liquid/Solid (L/S)	91
ratio	
III.3.4 Effect of the reaction time	93
III.3.5 Effect of the reaction temperature	95
III.4 Hydrolysis and calcination of	98
titanium dioxide	

Title	Pages
SUMMARY AND CONCLUSION	100
REFERENCES	105
ARABIC SUMMARY	Í

LIST OF TABLES

Table	Title	Page
Table (1)	Specifications of the used chemicals.	52
Table (2)	Chemical compositions of the used ilmenite concentrate.	59
Table (3)	Chemical compositions of the titania slag.	60
Table (4)	Effect of reaction temperature upon titanium dissolution efficiency (-325 mesh, 1.5 hr, 2.5 L/S ratio, 8 M).	66
Table (5)	Effect of Liquid/Solid ratio upon titanium dissolution efficiency (-325 mesh, 1.5 h, 140 °C, 8 M).	68
Table (6)	Effect of reaction time upon titanium dissolution efficiency (-325 mesh, 8M, 140 °C, 3 L/S ratio).	70
Table (7)	Effect of acid concentration upon titanium dissolution efficiency (-325 mesh, 2 h, 3 L/S ratio, 140 °C).	72
Table (8)	Effect of the grain size for titania slag upon titanium and total iron dissolution efficiency (18.4 M H ₂ SO ₄ , 1.5 h, L/S 2.5, 150 °C).	75

Table	Title	Page
Table (9)	Effect of acid concentration upon titanium and total iron dissolution efficiency (-325 mesh, 1.5 h, L/S 2.5, 150 °C).	77
Table (10)	Effect of L/S ratio upon titanium and total iron dissolution efficiency (-325 mesh, 1.5 h, 17 M H ₂ SO ₄ , 150 °C).	79
Table (11)	Effect of reaction temperature upon titanium and total iron dissolution efficiency (-325 mesh, 1.5 h, 17 M H ₂ SO ₄ , L/S ratio 2.5).	81
Table (12)	Effect of reaction time upon titanium and total iron dissolution efficiency (-325 mesh, 160 °C, 17 M H ₂ SO ₄ , L/S ratio 2.5).	84
Table (13)	Effect of titania slag / ilmenite ratio upon titanium and total iron dissolution efficiency ((10 M H ₂ SO ₄ , 3 h, L/S 4/1, 140 °C and - 325 mesh).	87
Table (14)	Effect of the sulfuric acid concentration upon titanium and total iron dissolution efficiency (ore grain size -325 mesh, 3 h, L/S 4/1, 140 °C and 20% titania slag added).	90