The Difference of Body Composition in Type 2 Diabetics and Obese Non Diabetics Using Bioelecterical Impedence Analysis

A thesis submitted for partial fulfillment of the MSc degree in Internal Medicine

By Aseel Ahmed Maher Karawia M.B,B.CH Supervisors

Dr. Rawia Khater
Prof of internal medicine L endocrinology
Faculty of Medicine
Cairo University

Dr.Dawlet Salem
Prof of Medical Biochemistry
Faculty of Medicine
Cairo University

Dr. Yasser Bakr
Prof ass. of Internal medicine
Cairo University
Faculty of Medicine
Cairo University
2008

Acknowledgement

Thanks to "ALLAH", creator of all, for helping me to complete this work.

I would like to express my deepest gratitude to Dr. Rawia Khater, Professor of internal Medicine, Cairo University for her constant support, encouragement and meticulous supervision and indeed I am honored to be given the chance to gain knowledge at the hands of such supportive supervisor.

I would like to express my sincere gratitude to Dr.Dawlet Salem, Professor of Medical Biochemistry, Cairo University for her indispensable directions support and kind supervision.

I am very grateful to Dr. Yaessr Bakr, assisstant Professor of Internal Medicine, Cairo University for his kind support and great help.

No words can be good enough to convey my thanks to my senior staff, colleagues and residents of internal Medicine, Cairo University especially for their help and support.

Abstract

Body Composition is the technical term used to describe the different components that, when taken together, make up a person's body weight. Now one must keep in mind that body composition and body weight are two entirely different concepts, and they are not interchangeable.

The human body is composed of a variety of different tissue types. The socalled 'lean' tissues, such as muscle, bone, and organs are metabolically active, while adipose, or fat tissue, is not.

Adipose tissue is divided into three different categories:

- 1. Essential fat, which supports life, and is extremely important to normal bodily function.
- 2. Storage fat, which protects internal organs and supplies some energy requirements.
- 3. Non-essential fat, serves no real purpose, and may, in fact, be detrimental to health.

The difference in these tissues is not readily distinguishable by stepping on a scale. A scale simply takes the sum of *everything* (fat, muscle, water, hair...etc), and gives an absolute weight measurement. Scales can't determine the lean-to-fat ratio of that weight. An individual can be "overweight" and not "over-fat." A bodybuilder, for example, may be 8% body fat, yet may be considered "over-weight" by a typical height-weight chart. Therefore, these charts are not a good indication of a person's ideal body weight for optimal health, much less for athletic performance.

In order to identify these tissues, several different methods of assessing the percent of fat vs. lean mass of an individual have been developed. These methods are referred to as Body Composition Analysis.

Key words: obesity, body composition, bioelectrical impedence, diabetes

List of contents

Aknoledgement	Page
IIntroduction and Aim of the w	ork
Review of Literature	
Obesity Definition Etiology Epidemiology Complications Treatement	1 1 1 4 5 13
Diabetes Mellitus Introduction Prediabetes DM DM Complications of Diabetes DM	19 19 19 20IIRisk factors for Type 21IIDiagnosting criteria for Type 21 27IITreatment of Type
Metabolic Syndrome Introduction Current criteria for the diagnosis of me Complications of metabolic syndrome Treatment of metabolic syndrome	etabolic syndrome 34 36 39 40
Body compposition analysis Introduction Densitometry Hydrometry Dual-Energy X-ray Absorptiometry Computerized Tomography Magnetic Resonance Imaging Body Composition Field Methods Bioelecterical Impedence Analysis Skin Fold Method Anthropometry	47 48 48 49 51 54 54 54

Subjects and methods	57
Results	60
Discussion	74
Summary	79
Refrences	81

List of Figures

		Page
•	Figure 1: Treatment algorithm for obesity	5
•	Figure 2: A client submerged in water during the measurement of	of
	underwater weight using a load cell platform system	48
•	Figure 3: A client being scanned using dual energyx-ray	
	absorptiometry	49
•	Figure 4: Illustration of abdominal adipose tissue and anatomica	I
	landmarks used for US measurements.	50
•	Figure 5: Images demonstrate our method for determining abdo	minal
	fat distribution on a CT scan obtained at the umbilicus.	52
•	Figure 6: CT sections 1-cm-thick axial at the L-4 level.	53
•	Figure 7:A client being measured by whole-body	
	bioelectrical impedance	55
•	Figure 8: The measurement of the triceps skinfold.	56
•	Figure 9: Body circumference measurement	56
•	Figure 10: Total cholesterol of diabetics and obese non diabetic	s
		66
•	Figure11: HDL-c of diabetics and obese non diabetics included	
	in the study	66
•	Figure 12: LDL-c of diabetics and obese non diabetics included study	in the 67
•	Figure 13: Triglyceride of diabetics and obese non diabetics inc in the study	luded 67
•	Figure 14: ALT of diabetics and obese non diabetics included in	the
	study	68
•	Figure 15: AST of diabetics and obese non diabetics included in	
	study	68
•	Figure 16: Body mass index of diabetics, obese non diabetics ar	
	controls included in the study	69
•	Figure 17: Fat percentage of diabetics, obese non diabetics and	
	· · · · · · · · · · · · · · · · · · ·	70
•	Figure 18: Body Lean (%) of diabetics, obese non diabetics and	
	controls included in the study	70

List of Tables

	P	age
•	Table 1: Histological Features of Non-Alcoholic Steatohepatitis	8
•	Table 2: Symptoms, Signs, Biochemistry and Imaging in NAFLD	9
•	Table 3: Disease Risk Associated with Overweight and Obesity by and Waist Circumference	BMI 13
•	Table 4: Factors to Consider When Evaluating Disease Risk Status Adults	in 14
•	Table 5: Recommendations for Adult Weight Loss Therapy	15
•	Table 6: Risk Factors for Type IIDiabetes Mellitus	20
•	Table 7: The current pre-and postprandial goals for patients	
-	with type II diabetes	28
•	Table 8: Pharmacological treatment choices for patients with type II	
	Diabetes	29
•	Table 9: Pharmacokinetics of Basal and Prandial Insulins	33
•	Table 10: Current Criteria for the Diagnosis of the Metabolic	
	Syndrome	36
•	Table 11: Risk factors,recommended treatment,and treatment initia goals	tion 46
•	Table 12: Descriptive statistics of obese diabetics included in the study	61
•	Table 13: Descriptive statistics of obese non-diabetics included in the study	ne 63
•	Table 14: Descriptive statistics of controls included in the study	64
•	Table 15: Comparison between laboratory data of obese diabetics obese non diabetics included in the study	and 65
•	Table 16: Comparison between anthropometric data and fat	
	composition of obese diabetics and non-diabetics included	
	in the study	71
•	Table 17: Comparison between anthropometric data and fat	
•	composition of obese diabetics and controls included in the study Table 18: Comparison between anthropometric data and fat	72
	composition of obese non diabetics and controls included	
	in the study	73

List of Abbreviations

AACE: American Association of Clinical Endocrinologists

ACE: American College of Endocrinology

ACE-Is: Angiotensin Converting Enzyme-Inhibitors

ADA: American Diabetes Association

AI: Angiotensin I

RB: Angiotensin II Receptor BlockerIIA

ALT: Alanine aminotransferase

ASCVD: Atherosclerotic Cardiovascular Disease

AST: Aspartate aminotransferase

ATP: Adenosine triphosphate

BF: Body Fat

BIA: Bioelectrical impedance analysis

BMI: Body Mass Index

BV: Body Volume

CAD: Coronary Artery Disease

CALM: Candesartan and Lisinopril Microalbuminuria

CHD: Coronary Heart Disease

CRP: c-Reactive Protien

CT: Computed tomography

CVD: Cardiovascular disease

DM: Diabetes Mellitus

DXA: Dual-energy x-ray absorptiometry

ECG: electrocardiogram

ESRD: End-Stage Renal Disease

FDA: Food and Drug Administration

FFA: Free Fatty Acids

FFM: Free Fat Mass

FPG: Fasting Plasma Glucose

GLP-1: Glucagon-Like Peptide -1

HDL-c: High-density Lipoprotein cholesterol

IDF: International Diabetes Federation

IFG: Impaired Fasting Glucose

IGT: Impaired Glucose Tolerance

IIH: Idiopathic Intracranial Hyprtention

IR: Insulin Resistance

IRS-1: Insulin receptor substrate 1

LCD: Low Calorie Diet

LDL-c: Low-density Lipoprotein cholesterol **LVSD**: Left Ventricular Systolic Dysfunction

MetS : Metabolic SyndromeMI : Myocardial InfarctionMR : Magnetic resonance

NAFLD: Non-Alcoholic Fatty Liver Disease

NASH: Non-Alcoholic Steatohepatitis

NCEP-ATP III: National Cholesterol Education Project

Adult Treatment Panel

NGT: Normal Glucose Tolerance

NHANES: National Health and Nutrition Examination

Survey

NHLBI: National Heart, Lung, and Blood Institute

NIH: National Institute of Health

NMR: Nuclear Magnetic Resonance

NO: Nitric Oxide

OADs: Oral Anti-diabetics

OGTT: Oral Glucose Tolerance Test

RAS: Renin-Angiotensin System

rKOA: rheumatic Knee Osteo-Arthritis

RV: Residual lung Volume

SKF: skinfold

SPECT: Single Photon Emission Computed Tomography

TBW: Total Body Water

UKPDS: United Kingdom Prospective Diabetes Study

US: Ultrasound

WHO: World Health Organization

Introduction and aim of work

Introduction

Body Composition is the technical term used to describe the different components that, when taken together, make up a person's body weight. Now one must keep in mind that body composition and body weight are two entirely different concepts, and they are not interchangeable.

Body Tissues

The human body is composed of a variety of different tissue types. The so-called 'lean' tissues, such as muscle, bone, and organs are metabolically active, while adipose, or fat tissue, is not.

FUNCTIONS OF FAT:

- insulation/cushioning
- stored energy (greatest capacity)
- structural (cell membrane)
- involved in nerve conduction (myelin sheath)
- critical for absorption of fat-soluble vitamins
- backbone for steroid hormones

Adipose tissue is divided into three different categories:

- 1. Essential fat, which supports life, and is extremely important to normal bodily function.
- 2. Storage fat, which protects internal organs and supplies some energy requirements.
- 3. Non-essential fat, serves no real purpose, and may, in fact, be detrimental to health.

The difference in these tissues is not readily distinguishable by stepping on a scale. A scale simply takes the sum of *everything* (fat, muscle, water, hair...etc), and gives an absolute weight measurement. Scales can't determine the lean-to-fat ratio of that weight. An individual can be "over-weight" and not "over-fat." A bodybuilder, for example, may be 8% body fat, yet may be considered "over-weight" by a typical height-weight chart. Therefore, these charts are not a good indication of a person's ideal body weight for optimal health, much less for athletic performance.

In order to identify these tissues, several different methods of assessing the percent of fat vs. lean mass of an individual have been developed. These methods are referred to as Body Composition Analysis.

Tools and Techniques used for Measuring Body Composition (alphabetically)

- Bioelectrical Impedance Analysis (BIA)
- Bioelectrical Impedance Spectroscopy (BIS)
- Body Mass Index (BMI)
- Body Weight
- Bone Dimensions
- Circumference Measurements
- Computed Tomography (CT)
- Creatinine
- Dual-energy X-ray Absorptiometry (DXA)
- Hand-Grip Dynamometer .
- Hydrodensitometry
- Isotope Dilution
- Magnetic Resonance Imaging (MRI)
- Methylhistidine
- Near Infrared (NIR) Interactance
- Neutron Activation Analysis
- Photon Absorptiometry
- Prompt Gamma Activation Analysis
- Skinfold Calipers
- Total Body Electrical Conductivity (TOBEC)
- Ultrasound
- Waist/Hip Ratio (WHR)
- Whole Body Potassium Counting

Aim of the work:

The work aims at studying body composition in a group of type 2 diabetic patient and comparing it with body composition in obese non diabetics

- 1. Finding the average values of height, weight, BMI, Fat%
- 2. Assessment of their body composition using Bioelecterical Impedence Analysis.

Trying to answer the question is there is any difference in body composition in type 2 diabetics and obese non diabetic patients or not?

Obesity

Definition:

Obesity is defined by the World Health Organization (WHO) as a condition of excessive fat accumulation in the body to the extent that health and well-being are adversely affected (World Health Organization, 2000).

The WHO defininition of obesity in adults is a Body Mass Index (BMI) of >30kg/m² (World Health Organization, 2000)

In the United States, data from the second National Health and Nutrition Examination Survey (NHANES II) were used to define obesity in adults as a BMI of 27.3 or more for women and 27.8 or more for men (Najjar et al,1987).

In the year 2000, there were more than 300 million obese adults worldwide, and industrialized countries showed a prevalence of obesity of approximately 20%. Currently, more than one-half of the adult population in the U.S. is overweight or obese (Mokdad et al, 2003).

The prevalence of obesity in children is also dramatically increasing worldwide, and this contributes to adulthood obesity (McTique et al, 2002).

Etiology:

The etiology of obesity is multifactorial and involves energy imbalance, genes and environmental, polygenic, and, monogenic causes (Robenbaum et al, 1997).

1.Energy balance:

Obesity is caused by an excessive intake of calories in relation to energy expenditure over a long period of time. The gastrointestinal tract has the capacity to absorb large amounts of nutrients. So large increase in body fat can result from even minor but chronic differences between energy intake and energy expenditure (Robenbaum et al, 1997).

2. Genes and environment:

The epidemic of obesity is occurring on genetic backgrounds that have not changed, but it is nonetheless clear that genetics plays an important role in the development of obesity (Snyder et al, 2004). Within a permissive environment, the more common genetic factors involved in obesity regulate the distribution of body fat, the metabolic rate and its response to exercise and diet, and the control of feeding and food preferences (Vohl et al, 2004)& (Bouchard et al, 2004).

Body size depends on the complex interaction between genetic background and environmental factors. In humans, genetic background explains only an estimated 40 % of variance in body mass (Bouchard & Perusse, 1993).

Epidemiologic studies have identified several environmental factors that contribute to the continued weight gain documented over the past several decades in westernized countries. The foremost among these factors are an increasingly sedentary lifestyle (e.g.,less physical activity and more time spent watching television), and the availability of energy-dense(high-fat), (concentrated-sugar),low-fiber foods (Gord et al,2002)& (Drewnowski et al, 2004)

In children, the increased consumption of sugar-added beverages and reduction of dairy intake have been associated with greater weight gain in prospective studies (Ludwig et al, 2001)&(Pereira et al, 2002).

Persons of certain genetic backgrounds are especially likely to gain weight and experience obesity related diseases when exposed to modern lifestyle. Over the past 50 years, the sriking changes in the lifestyle of Pima Indians living in Arizona has led to an epidemic of diet(15% of energy as fat), in addition to being in more sedentary life than rural life.

3. Monogenic causes of obesity:

Data from twin, adoption, and family studies indicate that genetic factors play a major role in the determination of the interindividual variation in fat mass within human populations (Bouchard et al,1990)

Little precise information regarding genetic causes of human obesity has been identified, namely, mutations in the genes encoding leptin, (Strobel et al,1998), leptin receptor (Clement et al,1998), prohormone covertase(PC)-1(Jackson et al,1997), pro-opiomelanocortin (POMC)

(Krude et al,1998), and the melanocortin-4 receptor(MC4R) (Yeo et al,1998). In all of these syndromes, hyperphagia results from dysfunction of hypothalamic pathways controlling satiety.

A. Leptin gene mutation:

Leptin is a hormone that is secreted by fat cells in direct proportion to total fat mass, is transported across the blood-brain barrier, and has receptors in hypothalamic nuclei that control appetite and energy expenditure (Schwartz et al,2000).

Since the discovery of the adipose tissue protein leptin, much progress has been made in understanding the molecular basis of body fat regulation. Leptin has major effects on food intake; leptin deficiency is associated with hyperphagia (Farooqi et al, 2002) suggesting a lack of a satiety response; and partial leptin deficiency is also associated with increased body fat.

A large body of evidence indicates that leptin, along with insulin, has actions within the central nervous system to inhibit food intake and activate thermogenesis (Schwartz et al, 2000).

Leptin and insulin function as critical signals to the brain in the long-term regulation of energy homeostasis and body adiposity, and do so in part by interacting with short-term signals of satiety emanating from the gastrointestinal tract such as cholecystokinin (Harvel,2001).

The pathophysiologic relevance of leptin was established in two extremely obese cousins with hyperphagia, who belonged to a consanguineous family of Pakistani origin (Montague et al,1997)

These cousins were homozygous for a single nucleotide deletion at position 398 of leptin gene. The administration of low doses of leptin to individuals with genetic leptin defeciency diminishes hyperphagia and induces weight loss that consists primarily of excess body fat. In contrast, administration of long-acting forms of leptin to humans without leptin defeciency induces only modest and variable weight loss or no weight loss (Hukshorn et al, 2000)