Detection Of Rhinovirus-associated Asthma Exacerbation in Egyptian Children

Thesis

Submitted for Partial Fulfillment of Master Degree in **Pediatrics**

By

Shaimaa Reda Abdel Rahman El Nashar

M.B., B.Ch (2011)

Under Supervision Of

Prof. Dr. Magda Yehia El-Seify

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Marwa Moustapha Attia Al-Fahham

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Noha Nagi M.Salah El-Deen

Lecturer of medical Microbiology & Immunology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

- Tirst and foremost thanks to Allah, the most beneficent and merciful.
- In wish to express my deep appreciation and sincere gratitude to Prof. Dr. Magda Yehia El-Seify Professor of Pediatrics, Faculty of Medicine, Ain Shams University, to whom I owe a lot. She offered me generously her expensive time, great help, and kind encouragement.
- Moustapha Attia Al-Fahham Tecturer of Pediatrics, Faculty of Medicine, Ain Shams University for her effort, constant encouragement and advice whenever needed.
- Twant to express my great thanks to **Dr. Noha Nagy**Tecturer of medical Microbiology & Immunology,

 Faculty of Medicine, Ain Shams University For
 her continuous help, and support thought this work, and
 for her kind supervision.

Contents

Subjects	Page
List of Abbreviatio	nsI
• List of Tables	IV
• List of Figures	VI
• Introduction	1
• Aim of the Work.	4
• Review of literatur	e
- Chapter (1): H	Bronchial asthma5
- Chapter (2):7	The role of respiratory infections in
	asthma and asthma exacerbations 59
- Chapter (3):	Rhinovirus and Asthma Exacerbation
	78
• Patients and Metho	ds94
• Results	103
• Discussion	119
• Summary & Concl	usion132
• Recommendations.	135
• References	136
Arabic Summary	

List of Abbreviations

AHR	Airway hyper responsiveness
APCS	Antigen presenting cells
ARI	Acute respiratory illness
BAL	Bronchoalveolar lavage
COPD	Chronic obstructive pulmonary disease
CyslTS	Cysteinyl leukotriene
ETS	Environmental Tobacco Smoke
FEF:	Forced expiratory flow rate
FeNO	Fractional exhaled NO
FRC _{pleth}	Functional residual capacity
FVC	Forced vital capacity
HBEC	Human bronchial epithelial cells
HBoV	Human Bocavirus
HMPV	Humanmetapneumovirus
HPIV	Human parainfluenza virus
HRV	Human rhinovirus (HRV)
ICAM-1	Intercellular adhesion molecule 1
ICS	Inhaled corticosteroids
IFNs	Interferons
IgE	Immunoglobulin E
IRES	Internal ribosome-entry site

ISAAC	International Study of Asthma and
ISAAC	International Study of Asthma and
	Allergies in Childhood
LABAS	Long acting beta 2 agonists
LOX5	5-lipooxygenase
LRTIs	lower respiratory tract infections
LT	Leukotriene modifiers
LTRAs	Leukotriene receptor antagonist
MDA5	Melanoma differentiation associated
	gene-5
NO ₂	Nitric oxide
O_3	Ozone
PAMPs	Pathogen associated molecular patterns
PBMCs	Peripheral blood mononuclear cells
PCR	Polymerase chain reaction
PEFR	Peak expiratory flow rate
PEFR	Peak expiratory flow rate
PM	Particulate matter
PPRs	Pathogen recognition receptors
PRR	Pattern-recognition receptor
Raw	Airway resistance
RIG-I	Retinoic acid inducible gene
RSV	Respiratory syncytial virus
RSV	Human respiratory syncytial virus

RT	Reverse transcription
RV	Rhinovirus
RV	Residual volume
SABA	Short acting beta2 agonists
sRaw	Specific airway resistance
Th	T-lymphocyte helper
Th1 and Th2	T helper 1 cells and T helper 2 cells
TLC	Total lung capacity
TLR	Toll like receptor
TSLP	Thymic stromal lymphopoeitin
VC	Vital capacity

List of Tables

Table No	Title	Page
Table (1)	Gender distribution among study	103
	population.	
Table (2)	Age distribution among the whole	104
	study population.	
Table (3)	time of study, residence and family	105
	history of asthma among the whole	
	study population.	
Table (4)	History of atopy in study population.	105
Table (5)	Clinical manifestations in study	106
	population.	
Table (6)	Rhinovirus sputum PCR distribution	106
	among study population.	
Table (7)	Rhinovirus Serotype detected in	107
	sputum PCR distribution among study	
	population.	
Table (8)	Comparison between negative PCR	108
	group and positive PCR group	
	regarding demographic data (age,	
	gender, time of case collection, family	
	history and history of atopy).	

🕏 List of Tables 🗷

Table No	Title	Page
Table (9)	Comparison between negative PCR	110
	group and positive PCR group	
	regarding Clinical manifestations	
	(cough, wheezes, breathlessness and	
	alertness).	
Table (10)	Comparison between negative PCR	112
	group and positive PCR group	
	regarding Clinical signs (Respiratory	
	Rate and temperature).	
Table (11)	Comparison between negative PCR	114
	group and positive PCR group	
	regarding Clinical signs (Suprasternal	
	retraction, use of accessory muscles	
	and wheeze on auscultation).	
Table (12)	Comparison between negative PCR	115
	group and positive PCR group	
	regarding oxygen saturation and	
	severity of bronchial asthma.	
Table (13)	Comparison between negative PCR	118
	group and positive PCR group	
	regarding Outcome (Recovery,	
	hospital admission and death).	

List of Figures

Figure No	Title	Page
Fig. (1)	Factors limiting airflow in acute and	20
	persistent asthma.	
Fig. (2)	Description of subpopulations of	22
	lymphocytes, T helper 1 cells and T	
	helper 2 cells (Th1 and Th2) with	
	distinct inflammatory mediator profiles	
	and effects on airway function.	
Fig. (3)	Algorithm for spirometry interpretation.	33
Fig. (4)	A guideline for spirometry interpretation.	33
Fig. (5)	Assessing asthma in children.	38
Fig. (6)	Demonstrate environmental triggers and	46
	control.	
Fig. (7)	Different doses of corticosteroids.	50
Fig. (8)	Classification of asthma according to	56
	severity in age group from 5-11 years	
	old.	
Fig. (9)	Classification of asthma in age group	57
	from (o-4) years old.	
Fig. (10)	Step wise approach to manage asthma	58
	according to severity	
Fig. (11)	The role of respiratory tract infection on	64
	asthma.	

🕏 List of Figures 🗷

Figure No	Title	Page
Fig. (12)	Electron micrograph of respiratory	67
	syncytial virus (RSV).	
Fig. (13)	Factors that determine if respiratory	75
	infections provoke asthma.	
Fig. (14)	Molecular surface of rhinovirus.	78
Fig. (15)	Possible immunological mechanisms of	87
	HRV -induced bronchial asthma in	
	infants.	
Fig. (16)	Proposed effects of epithelial integrity	90
	on severity of HRV infections and	
	exacerbations of asthma.	
Fig. (17)	Potential mechanisms of RV-induced	91
	asthma exacerbations including RV-	
	modulated ICAM-1 expression (1.3.4.1),	
	deficient type I and type III IFNs	
	(1.3.4.2), imbalanced Th1/Th2 responses	
	(1.3.4.3), increased innate FceRI-	
	expressing cells and IgE (1.3.4.4),	
	aberrant epithelial cell structure (1.3.4.5)	
	and increased induction of epithelial-	
	derived mediators (1.3.4.6).	
Fig. (18)	Chemical structure and mechanism of	92
	action of pleconaril.	

🕏 List of Figures 🗷

Figure No	Title	Page
Fig. (19)	Gender distribution of the whole study	104
	population.	
Fig. (20)	Percentage of positive family history	109
	with positive and negative rhinovirus	
	PCR.	
Fig. (21)	Percentage of shortness of breath in	111
	whole study population with positive	
	and negative rhinovirus PCR.	
Fig. (22)	Percentage of alertness in whole study	111
	population with positive and negative	
	rhinovirus PCR.	
Fig. (23)	Percentage of tachypnea in whole study	113
	population with positive and negative	
	rhinovirus PCR.	
Fig. (24)	Percentage of fever in whole study	113
	population with positive and negative	
	rhinovirus PC.	
Fig. (25)	Percentage of respiratory distress in	116
	whole study population with positive	
	and negative rhinovirus PCR.	
Fig. (26)	Percentage of respiratory distress in	116
	whole study population with positive	
	and negative rhinovirus PCR.	

🕏 List of Figures 🗷

Figure No	Title	Page
Fig. (27)	Percentage of wheeze in whole study	117
	population with positive and negative	
	rhinovirus PCR.	
Fig. (28)	Percentage of acute asthma severity in	117
	whole study population with positive	
	and negative rhinovirus PCR.	
Fig. (29)	Percentage of desaturation in whole	118
	study population with positive and	
	negative rhinovirus PCR.	

Introduction

Asthma is the most common respiratory chronic disease of childhood: its prevalence has been rising for the last three decades, up to the point to currently affect a proportion of children as high as 10%. It is a heterogeneous condition expressed through a plethora of phenotypes that mirror diverse, not fully characterized underlying mechanisms. From this perspective, the definition of asthma as a syndrome rather than a single entity would do justice to the multitude of immunologic, mechanistic and structural factors that orchestrate its pathogenesis (*Martin et al.*, 2005).

Asthma exacerbations, are sudden-onset, episodic deteriorations of preexisting disease, and a key cause for anxiety and impaired quality of life in children .They are acute or subacute episodes of progressively worsening shortness of breath, cough, wheezing, and chest tightness, or some combination of these symptoms, characterized by decreases in expiratory airflow and objective measures of lung function (spirometry and peak flow) (*Dougherty et al.*, 2007).

The precipitants of acute asthma exacerbations are numerous and include viruses, allergens (dust mite, pollen, animal dander), occupational exposures (grains, flours, cleaning agents, metals, irritants, woods), hormones (menstrual asthma), drugs (ASA, NSAIDs, beta-blockers), exercise, stress, and air pollutants. (*Nicholoson et al.*, 1993)

A wide range of respiratory viruses, including rhinoviruses, respiratory syncytial virus (RSV), influenza viruses, coronaviruses, human parainfluenza viruses, enteroviruses, human metapneumovirus (HMPV), and the recently discovered human bocavirus, have been detected from patients with asthma exacerbations. Rhinovirus (RV) constitutes the key culprit for virus-induced asthma attacks. RV (genus Enterovirus, family Picornaviridae), a virus of considerable heterogeneity comprising over 100 serotypes, is the main cause of common cold and is consistently associated with sudden-onset asthma attacks in children and adults (Jortti et al., 2003). Typically, RVs are segregated in to two groups, HRV-A and HRV-B, although a new, potentially more virulent and exacerbation-relevant group (HRV-C), has recently been identified. RVs are predominant during the spring and autumn, and they have been incriminated for the peak in pediatric asthma exacerbations (*Plethora et al.*, 2008).