Ultrasonographic Measurement of Cervical Length as A Predictor of Successful Induction of Labor

(A prospective study)

Submitted in partial fulfillment of Master Degree in Obstetrics and Gynecology

Yasmine Hassaan Mohamed

M.B.B. Ch Faculty of Medicine Cairo University, 2010

Resident of Obstetrics and Gynecology Embaba General Hospital

Supervised by:

DR. Amr Abdelaziz Nadim

Professor of Obstetrics and Gynecology Faculty of medicine, Ain Shams University

Dr. Walid El Basuony Mohamed

Lecturer of Obstetrics and Gynecology Faculty of medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Acknowledgement

First of all, all gratitude is due to \mathbf{God} almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Amr Abdelaziz Nadim**, Professor of obstetrics and gynecology, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

Really I can hardly find the words to express my gratitude to **Dr.**Walid ELBasuony Mohamed, lecturer of obstetrics and gynecology, Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Yasmine Hassaan Mohamed

Contents

List of Abbreviations	i-ii
List of Tables	iii
List of Figures	
Introduction and Aim of the Work	1
Review of Literature	5
Postterm pregnancy	5-24
Chapter II:	
Induction of Labor	5-67
Chapter III:	
Obstetric role of Transvaginal Ultrasonography 68	8-75
Patients and Methods	76
Results	91
Discussion	105
Summary	112
Conclusion	114
Recommendations	115
References	116
Arabic Summary	

List of Abbreviations

AF : Amniotic fluid.

AFI : Amniotic fluid index.

AUC : Area under curve.

BMI : Body mass index.

BPP : Biophysical profile.

CRF : Corticotropin-releasing factor.

CS : Cesarean section.

CTG : Cardiotocography.

DHEA-S: Dehydroepiandrosterone sulfate.

EASI : Extra amniotic saline infusion.

EDD : Expected date of delivery.

FHR : Fetal heart rate.

FN : False negative

FP : False positive.

GAGs : Glucosaminoglycans

GBS : Group B Beta-hemolytic Streptococci.

IGFBP-1 : Insulin-Like Growth Factor Binding Protein-

1.

IOL : Induction of labor.

IUFD : Intra uterine fetal death

LMP : Last menstrual period.

List of Abbreviations (Cont.)

NICHD: National institute of child health and

development.

NPV : negative predictivity value.

PGE2 : Prostaglandin E2.

PGF2 : Prostaglandin F2.

PPV : Positive predictivity value.

PROM : Premature rupture of membrane.

ROC : Receiver-operating characteristic.

SMFM : Society of Maternal-Fetal Medecine

TN : True negative

TP : True positive

TVUS : Transvaginal ultrasonography.

US : Ultrasonography.

VD : Vaginal delivery.

WHO : World Health Organization.

List of tables

Table	Title	Page
1	Bishop Scoring System.	29
2	Modified Bishop scoring system	30,82
3	Description of personal and clinical	92
	characteristics of study participants	
4	Comparison between failed and	93
	succeeded induction patients regarding	
	personal and clinical characteristics	
5	Description of study participants	94
	according to success of labor induction	
6	Description of study participants	95
	according to gravidity and mode of	
	delivery	
7	Description of study participants	97
	according to number of abortions and	
	their mode of delivery	
8	Distribution of the study population in	98
	relation to cervical length and mode of	
	delivery	
9	Cut off level of cervical length	99
10	Cut off level of modified Bishop score	101
11	Combined cervical length measured by	103
	TVUS and modified Bishop score	
12	Indications of cesarean sections and their	104
	percentage	

List of Figures

Fig.	Title	Page
1	Perinatal mortality per 1000 ongoing pregnancies	12
2	Risk of Stillbirth by week of gestation	15
3	Relationship between stillbirth and gestational age	15
4	Stages of cervical function during pregnancy and the puerprium. iNOS: induced nitric oxide synthase; 1L-8: interleukin-S; HA: hyaluronan; GAGs: glycosaminoglycan's	34
5	Misoprostol levels over time with oral versus vaginal administration	41
6	Cervical ripening balloon	46
7	Ultrasound measurements of cervical length and posterior cervical angle	72
8	Image of measuring posterior cervical angle	73
9	Patient data sheet	79-81
10	Images of cervical length measured by TVUS	84
11	Partogram	86
12	Distribution of gravidity among all study patients and their mode of delivery	94
13	Distribution of number of abortions among all study patients and their mode of delivery	95
14	Distribution of patients according to success of labor induction	96

List of Figures (Cont.)

Fig.	Title	Page
15	Distribution of the study population in	98
	relation to cervical length and mode of	
	delivery	
16	Cut off level of cervical length	100
17	Receiver-operating characteristics	100
	(ROC) curve for sonographically	
	measured cervical length &Relation	
	between cervical length and successful	
	induction	
18	Cut off level of modified Bishop score	102
19	Receiver-operating characteristics	102
	(ROC) curve for Bishop Score Relation	
	between modified Bishop Score and	
	successful induction	
20	Combined cervical length measured by	104
	TVUS and modified Bishop score	
21	Indications of cesarean sections and their	105
	percentage	

Introduction

Induction of labor refers to iatrogenic stimulation of uterine contractions to accomplish delivery prior to the onset of spontaneous labor (*Martin et al. 2011*).

It is performed in about 20% of all pregnancies. According to the studies, the rate varies from 9.5 to 33.7 percent of all pregnancies annually (*Tendore 2003*).

Successful induction is reported to be related to cervical characteristics, or 'ripeness' (*Pandis et al.*, 2001 and *Vrouenraets et al.*, 2005).

One of the most common indications for labor induction is post term pregnancy, induction for such an indication has been shown to reduce the likelihood of perinatal death (*Crowley 2000 and Hannah et al; 1992*).

Other indications for induction include antepartum rupture of membranes or other situations that require termination of conservative management of high risk pregnancies. Potential fetal compromise such as significant fetal growth restriction, non-reassuring fetal surveillance, maternal medical conditions like diabetes, renal disease, significant pulmonary disease, chronic or gestational hypertension, antiphospholipid syndrome, suspected or proven chorioamnionitis, abruptio placentae, and intrauterine fetal death (*Tan, Hannah 2000*).

The need for cesarean delivery is believed to increase in associatiation with the increase in induction of labour for both nulliparous and parous women (Yeast, Jones, Poskin 1999).

Introduction and Aim of the Work

Cesarean delivery not only carries operative risks in the index pregnancy, but also increases risks for future pregnancies (*Kwee et al.*,2007).

The continuous rise in rates of cesarean section gives cause for concern to both obstetricians and policy makers (*Gibbons et al.*,2012).

Recent randomized comparisons have shown that the effect of induction of labor on the risk for cesarean section is limited (*Boers et al.*,2010).

Over the past decade, pre-induction cervical length, as determined by transvaginal sonography, has been proposed as a predictor for cervical ripeness. Initial changes at the internal os of the cervix can be observed by transvaginal sonography, even in the absence of cervical dilatation. It has been suggested that measurement of cervical length before induction of labor can be used to assess the success of induction of labor (*Verhoeven et al.*,2013).

Transvaginal ultrasound allows visualization of the cervix beyond a closed external os and measures the cervical length accurately, without much inter-observers' variation, especially in cases of parts of the cervix that couldn't be felt by digital examination (*Chandra*, et al., 2001).

It may accurately reflects the cervical anatomy and it is considered a less painful examination compared to the digital examination (*Lazanakis*, *Marsh*, *Brockbank* 2002).

Gomez et al. concluded that the cervical length measured by TVUS was a better predictor of successful

Introduction and Aim of the Work

induction than the modified Bishop's score (Gomez et al. 2007).

To date, the Bishop score remains the standard method for predicting the duration and safety of induced labor (*Bishop 1964*), However, a recent systematic review showed that the Bishop score was a poor predictor of the outcome of labor in women scheduled for induction (*Kolkman et al.*, 2013).

Aim of the Work

To detect the accuracy of pre-induction ultrasonographic cervical length measurement in the prediction of successful vaginal delivery within 24 hours of induction of labor.

Chapter 1 Postterm pregnancy

Definitions:

Postterm pregnancy refers to a pregnancy that has reached or extended beyond 42, 0/7 weeks of gestation from the last menstrual period (LMP), whereas a late-term pregnancy is defined as one that has reached between 41 0/7 weeks and 41, 6/7 weeks of gestation (*Spong CY., 2013*).

Recommended Classification of Deliveries From 37 Weeks of Gestation

Early term: 37, 0/7 weeks through 38

6/7 weeks

Full term: 39, 0/7 weeks through 40

6/7 weeks

Late term: 41, 0/7 weeks through 41

6/7 weeks

Postterm: 42, 0/7 weeks and beyond

(Spong CY, 2013)

Gestation in singleton pregnancies lasts an average of 40 weeks (280 days) from the first day of the last menstrual period to the estimated date of delivery.

In the past, the period from 3 weeks before until 2 weeks after the estimated date of delivery was considered "term" (WHO, 2013) with the expectation that neonatal outcomes from deliveries in this interval were uniform and good. Increasingly, however, research has identified that neonatal outcomes, especially respiratory morbidity, vary depending on the timing of delivery even within this 5-week gestational age range. The frequency of adverse neonatal

outcomes is lowest among uncomplicated pregnancies delivered between 39 0/7 weeks of gestation and 40 6/7 weeks of gestation (*Tita AT et al;2009, Reddy UM et al; 2011*).

For this reason, quality improvement projects have focused, for example, on eliminating nonmedically indicated deliveries at less than 39 0/7 weeks of gestation (*ACOG*, 2013).

The terms prolonged pregnancy, postdates and postdatism are synonymously used to describe the same condition (i.e > 40 weeks). The terms postdate and prolonged pregnancy are ill-defined and best avoided (ACOG, 2004).

Epidemiology:

"The incidence of postterm pregnancy is about 7% of all pregnancies (*Martin et al.*, 2007). The prevalence varies depending on population characteristics and local management practices. Population characteristics that affect the prevalence include: the percentage of primigravidas in the studied population, the prevalence of obesity, a prior postterm pregnancy as well as genetic predisposition. The proportion of women with pregnancy complications and the frequency of spontaneous preterm labor also influence the rate of postterm pregnancy. The link between ethnicity and overall duration of pregnancy is not well established .(*Collins et al.*, 2001; *Caughey et al.*, 2009).

Local management practices such as scheduled induction of labor, differences in the use of early ultrasound (US) for pregnancy dating, and elective Cesarean section (CS) rates will affect the overall prevalence of postterm pregnancy. In the United States for example, the increase in