ACKNOWLEDGEMENT

First, I thank (Allah) the Beneficent, the Merciful, for my success in completing this work.

I would like to express my thanks to:

Prof. Hosnia Mohamed Abu-Zeid, professor of Nuclear Physics at Physics Department, Faculty of Women for Art, Science, and Education, Ain Shams University, for her supervision, honest guidance, continuous encouragement and trustful help through the experimentation and writing the manuscript.

Dr. Afaf Abd El-Lateef Nada, assistant professor of Nuclear Physics at Physics Department, Faculty of Women for Art, Science and Education, Ain Shams University, for her advises in supervising the manuscript, generous assistance and continuous helpful discussions leading always towards more perfection and achievement of this work.

Dr. Thanaa M. Abd-El-Maksoud assistant professor of Nuclear physics at Physics Department, Faculty of Women for Art, Science and Education, Ain Shams University, for her supervision and encouragement.

Prof. Samir Ahmed Awad professor of Geology Faculty of Science, Ain Shams University, for kindly guidance throughout the present work and trustful help through supplying available field samples and geological analysis.

My husband for his patience, encouragement and understanding of my dedication to completing my master

My family (mother and father) for her continuous support and encouragement during this work.

I would also like to thank faculty members who provided guidance and support in completing this research.

`ABSTRACT

The present study aims mainly to investigate the natural radioactivity, dose rate and the environmental impacts in the soil samples from Nasr City and Heliopolis regions.

The concentrations and distribution of radionuclides in petrified wood forest in El-Qattamia in Nasr City have been determined using high resolution gamma spectrometry to evaluate the environmental radioactivity. The mean activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K were 65.26±12.99, 23.66±0.95 and 146.33±1.50 Bqkg⁻¹, respectively. Data of the soil samples show evidence of possible deposition and accumulation of ¹³⁷Cs. The mean activity concentration of ¹³⁷Cs in the soil samples was 4.37±0.16 Bqkg⁻¹ with a range of 0.00–35.70 Bqkg⁻¹. The measured activity concentration range of ¹³⁷Cs was compared with reported ranges in literatures for some locations in the world.

The dose rate in air, annual effective dose rate, radium-equivalent; and are in agreement with recommended values. The mean External hazard index are (43.58nGyh⁻¹, 0.05mSv, 44.43Bqkg⁻¹and 0.15) respectively, then all these hazard parameters activity concentrations of the gamma-emissions from radionuclides in El-Qattamia petrified wood forest region were relatively low.

The average activity concentrations of ²³²Th and ⁴⁰K for 3rd Settlement were (25.50& 310.25 Bqkg⁻¹) respectively and for 1st Settlement were (17.84& 142.88 Bqkg⁻¹) respectively in Nasr City, which are in agreement with world wide average value. But the average activity concentration of

²³⁸U for 3rd& 1st Settlements were (76.20& 70.33 Bqkg⁻¹) respectively which these values is relatively higher two times than the average world wide values (35, 30 and 400 Bqkg⁻¹) for ²³⁸U, ²³²Th and ⁴⁰K respectively.

The average activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K in other locations in Nasr City (Al-Autostorad, El-Qattamia, El-Tayaran Street, 8-region) are agreement with the average world wide value, except one region (6-region) where the activity concentration of ²³⁸U (49.17Bqkg⁻¹) which is relatively high, while the average activity concentrations of ²³²Th and ⁴⁰K in 6-region are agreement with the corresponding world wide value.

The average activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K for (Almazza and Massaken El-Sheratoon) in Heliopolis are in agreement with the average world wide value, except one region (Al-Autostorad) where the activity concentration of ²³⁸U (60.33Bqkg⁻¹) is relatively high, while the average activity concentrations of ²³²Th and ⁴⁰K in Al-Autostorad are in agreement with the corresponding world wide value.

Some selected samples of relatively high uranium concentrations at 3rd and 1st settlements are subjected to chemical and mineralogical analysis; these samples contain heavy minerals such as Opaque, Zircon, Tourmaline, Rutile, Staurolite, Garnet, Augite Kyanite and Hornblend.

The out put results referred to all these localities indicates that these regions are not hazardous from the environmental point of view. These valuable results can be considered as a data base for radiation background for decision makers.

LIST OF FIGURES

Fig. No.		—— Page
(1-1)	Basic components of most soils	2
(1-2)	Kaolinite, one of the many forms of Clay	4
(1-3)	Two of the many forms of shale	7
(1-4)	Marl stone	8
(1-5)	Cs-137 decay diagram	17
(1-6)	137Cs air concentration (Bqm ⁻³) measured in South Piemonte (village of Saluggia) during the passage of Chernobyl cloud]	22
(1-7)	¹³⁷ Cs and ⁹⁰ Sr activity in milk in Germany	24
(1-8)	The calculated effective dose equivalent for some Egyptian foodstuffs for the period 1990–1992, and the annual consumption per person from FAO (2000)	25
(1-9)	Location of petrified wood forest	26

(1-10)	The studied of petrified wood forest	28
(1-11)	Map of Nasr City and Heliopolis	32
(2-1)	The decay series of Uranium (²³⁸ U)	53
(2-2)	The decay series of Uranium (235U)	5
(2-3)	The decay series of Thorium (232Th).	54
(2-4)	The decay series of Neptunium (237Np)	55
(2-5)	Schematic illustration of secular equilibrium between a parent ²²⁶ Ra and its daughter ²²² Rn (Radon gas): buildup of short-lived daughters from a long-lived parent	59
(2-6)	Schematic illustration of transient equilibrium between a parent ¹⁴⁰ Ba and its daughter ¹⁴⁰ La: daughter and parent activities are approximately equal but change with time	60

(2-7)	Schematic illustration of 'no equilibrium' between a parent ¹⁴⁶ Ce and its daughter ¹⁴⁶ Pr: total activity approaches the daughter activity with time	61
(2-8)	Distribution of population of 25 countries with respect to the outdoor absorbed dose rate in air from terrestrial gamma radiation	68
(3-1)	Gamma ray attenuation in shielding materials	78
(3-2)	Linear attenuation coefficient of NaI showing contributions from photoelectric absorption, Compton scattering, and pair production	82
(3-3)	Various types of radiations and shielding	85
(3-4)	Half-Thickness Values vs. Energy for Commonly Used Shielding Materials	87
(3-5)	Definition of detector resolution	91
(3-6)	Examples of response functions for detectors with relatively good resolution	

	and relatively poor resolution	91
(3-7)	Connection of components in a typical energy spectroscopy system (the dashed line indicate the components included in the detector system)	101
(3-8)	Vertical cryostat mounting arrangements	102
(3-9)	Gamma-ray spectroscopy system	103
(3-10)	Typical calibration plot for a linear	104
(3-11)	The absolute efficiency curves for some used configurations: (a) for 500 ml and (b) for 250 ml	107
(4-1)	Activity concentration of ²²⁶ Ra and ²³⁸ U in (Bqkg ⁻¹)	119
(4- 2a)	Activityof ²³⁸ Uand ²³² Th in (Bqkg ¹)	123
(4-2b)	Activity concentration of ⁴⁰ K in (Bqkg ⁻¹)	123

(4-2c)	Activity concentration of ¹³⁷ Cs in (Bqkg ⁻¹)	124
(4-3)	Activity concentration of ⁴⁰ K and ¹³⁷ Csin (Bqkg ⁻¹)	125
(4-4)	Activity concentration of ⁴⁰ K and ²³² Th in (Bqkg ⁻¹)	125
(4-5)	Activity concentration of ²³⁸ U and ²³² Th in (Bqkg ⁻¹)	125
(4-6)	The results obtained by ICP-MS for the determination the Cs-137 and Ba-137 in different samples	128
(4-7)	Elemental composition by ESEM for petrified Wood forest	130
(4-8)	Relative frequency distribution of the total gamma absorbed dose at 1m above ground for petrified wood Forest	135
(4-9)	contributions of ²³⁸ U, ²³² Th, ⁴⁰ K and fission product ¹³⁷ Cs for Absorbed Dose rate for petrified Wood Forest	135

(4-10)	Activity concentration of ²³⁸ U and ²²⁶ Ra in (Bqkg ⁻¹) for 3 rd Settlement	141
(4-11)	Activity concentration of ²³⁸ U and ²²⁶ Ra in (Bqkg ¹)for1 st Settlement	141
(4-12)	Activity concentrations of ²³⁸ U, ²³² Th and ⁴⁰ K in (Bqkg ¹) for 3 rd Settlement	146
(4-13a)	Frequency distribution of ²³⁸ U activity for the 3 rd Settlement	146
(4-13b)	Frequency distribution of ²³² Th activity for the studied 3 rd Settlement	147
(4-13c)	Frequency distribution of ⁴⁰ K activity for the studied 3 rd Settlement	147
(4-14)	Activity concentrations of ²³⁸ U, ²³² Th and ⁴⁰ K in (Bqkg ¹) for 1 st Settlement	152
(4-15a)	Frequency distribution of ²³⁸ U activity for 1 st Settlement	152
(4-15b)	Frequency distribution of ²³² Th activity s for 1 st Settlement	153

(4-15c)	Frequency distribution of ⁴⁰ K activity for all the measured samples for the studied 1 st Settlement	153
(4-16a)	Activity of ²³⁸ U and ²³² Th in (Bqkg ⁻¹) for 3 rd Settlement	155
(4-16b)	Activity of ⁴⁰ K and ²³⁸ U in (Bqkg ⁻¹) 3 rd Settlement	155
(4-16c)	Activity of ⁴⁰ K and ²³⁸ U in (Bqkg ⁻¹) 3 rd Settlement	155
(4-17a)	Activity of ²³⁸ U and ²³² Th in (Bqkg ⁻¹) for1 st Settlement	156
(4-17b)	Activity of ²³⁸ U and ⁴⁰ K in (Bqkg ⁻¹) for 1 st Settlement	156
(4-17c)	Activity of ⁴⁰ K and ²³² Th in (Bqkg ⁻¹) for 1 st Settlement	156
(4-18)	Relative contributions to total absorbed dose in outdoor air due to ²³² Th and ²³⁸ U decay products and ⁴⁰ K content in soil for	

	3 rd Settlement	164
(4-19)	Relative contributions to total absorbed dose in outdoor air due to ²³² Th and ²³⁸ U decay products and ⁴⁰ K content in soil for 1 st Settlement	164
(4-20a)	Scatter-plot of the ²³⁸ U activity concentration vs. absorbed dose rate for 3 rd Settlementarea	165
(4-20b)	Scatter-plot of the ²³² Th activity concentration vs. absorbed dose rate for 3 rd Settlementarea	165
(4-20c)	Scatter-plot of the ⁴⁰ K activity concentration vs. absorbed dose rate for 3 rd Settlement	166
(4-21a)	Scatter-plot of the ²³⁸ U activity concentration vs. absorbed dose rate for 1 st Settlement area	166
(4-21b)	Scatter-plot of the ²³² Th activity concentration vs. absorbed dose rate for1 st Settlement area	167
(4-21c)	Scatter-plot of the ⁴⁰ K activity concentration versus measured dose rate for1 st Settlement	

	area	167
(4-22)	Activity concentrations for ²³⁸ U, ²³² Th and ⁴⁰ K along the whole area in Nasr city	
		185
(4-23)	Activity concentrations for ²³⁸ U, ²³² Th and ⁴⁰ K along the whole area in Heliopolis.	107
		186
(4-24a, b &c)	Frequency distribution of ²³⁸ U, ²³² Th and ⁴⁰ K in (Bqkg ⁻¹) in Nasr City	187
(4-25a, b &c)	Frequency distribution of ²³⁸ U, ²³² Th and ⁴⁰ K in (Bqkg ⁻¹) in Heliopolis	189
(4-26)	Absorbed Dose rate in (nGyh-1) in Heliopolis and Nasr City	190

LIST OF TABLES

Table No.		Раді
(1-1)	Particle size range of sand, silt and clay	2
(1-2)	Radionuclides released during 1957 Windscale accident	11
(1-3)	Collective effective Dose due to the Windscale 1957 fire (in Sv)	12
(1-4)	Areas extent of ¹³⁷ Cs contamination from the accident in the European(UNSCEAR2000)	20
(2-1)	Singly naturally primordial radionuclide	53
(2-2)	Annual radiation exposure fractions	57
(3-1)	Attenuation properties of lead and tungsten	86

(3-2)	Description of samples collected from 3 rd Settlement	93
(3-3)	Description of samples collected from 1 st Settlement	94
(3-4)	Radionuclides used for energy calibrations	105
(3-5)	Characteristics of selected gamma-emitting radionuclides	110
(3-6)	The lowest limits of detection (LLD) for the radionuclides of ⁴⁰ K, ²³⁸ U, ²³² Th, ²³⁵ U and ¹³⁷ Cs	111
(4-1)	The measured activity concentrations for radionuclide isotopes of natural U-238-Ra-226, Th-232 series and activity ratio ²³⁸ U/ ²²⁶ Ra in (Bqkg ⁻¹) for different collected samples for Petrified Wood Forest	118
(4-2)	The measured activity concentrations for radionuclide isotopes of natural U-238-Ra-226, Th-232 series, K-40, U-235 and Cs-137 in (Bqkg ⁻¹) for different collected samples for Petrified Wood Forest	121