

Impact of Salinity on Biological Wastewater Treatment

Ву

Eng. Sondos Abdel Hakeem Saad

M.Sc. Civil Engineering Ain Shams University 2010

Teaching assistant Public works Department

Faculty of Engineering Ain Shams University

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Civil Engineering

Supervisors

Prof. Dr. Mohamed Shaaban Negm

Professor of Sanitary & Environmental Engineering

Public Works Department

Faculty of Engineering Ain-Shams University

Prof. Dr. Damir Brdanovic	Prof. Dr .Mahmoud Abdel Azeem
Head of Environmental Engineering & Water Technology	Professor of Sanitary & Environmental Engineering
EEWT Department	Public Works Department
UNESCO-IHE-Delft The Netherlands	Faculty of Engineering Ain-Shams University
	Cairo – Egypt
	2015

Impact of Salinity on Biological Wastewater Treatment

By

Eng. Sondos Abdel Hakeem Abdel Aal Saad

A thesis submitted for the partial fulfillment of the PhD Degree

Examiners Committee

Name		Signature
		•••
Prof. Dr. Mohamed Shaaban Negm	Professor of Sanitary & Environmental Engineering Public Works Department Faculty of Engineering Ain Shams University	
Prof. Dr .Mahmoud Abdel Azeem	Professor of Sanitary & Environmental Engineering Public Works Department Faculty of Engineering Ain Shams University	

Statement

This thesis is submitted to Public Works Department, Faculty of Engineering, Ain Shams University in the partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering.

The work in this thesis was carried out in joint supervision between UNESCO-IHE-Delft in The Netherlands and Public Works Department, Faculty of Engineering, Ain Shams University from 2012 to 2015.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date:

Signature:

Name: Sondos Abdel Hakeem Abdel Aal Saad

Acknowledgment

First of all, I would express all my gratitude to **ALLAH** almighty for blessing this work until it has reached its end, as a part of his generous help throughout my life.

First and foremost, my utmost gratitude to **Prof. Dr. Mohamed Shaaban Negm**, Professor of Sanitary and Environmental Engineering, Ain Shams
University whose sincerity and encouragement I will never forget. **Prof. Dr. Mohamed Shaaban Negm** has been my inspiration as I hurdle all the obstacles in the completion of this research work. I could not have imagined having a better promotor for my PhD study.

I would like to express my deep gratitude to **Prof.Dr. Mahmoud Abdel Azeem** Professor of Sanitary and Environmental Engineering, Ain Shams University for the support, patience, and advice. His early support helped me initiate this PhD study abroad, which was highly valuable to my career and research. His effort was a plus to the research progress.

I would like to express my sincere gratitude to **Prof.Dr. Damir Brdjanovic** for the continuous support through the research. I learned much about critical thinking, problem solving, and how to make a good research from him. He supported me to setup a good research, present it worldwide in an international conference, publish in high impact factor journals, and work closely with reputable research groups in **Unesco-IHE** and **TU-Delft** especially the group of **Prof. Mark van Loosdrecht** who, taught me a lot in the few times I met him in person. However,I was so lucky to learn from his valuable feedback on my work and papers. I had a chance to work with my sincere friend **Laurens Welles** who is without his support and guidance

I would have never been able to complete this study with this richness. I am proud and grateful to be granted this great learning opportunity.

A deep gratitude is expressed to **Dr. Eng. Mostafa Moussa** for the continuous support starting from early stage in Egypt and extended to technical and personal advice, support and guidance all through the time of research in The Netherlands.

Thanks to the Missions department, in Ministry of Higher Education for the generous financial support through the years of the research.

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study. Many thanks to my friends, colleagues, and staff in **UNESCO-IHE** (Fiona Zakaria, Peter Mawioo, Joy Riungo, Sangyoeb Kim, Javier Sanchez, Zahrah Mousa, Marmar Badr, Lab staff, and many others) and in **Ain Shams University** (Prof. Mohamed ElTokhy, Prof. Ibrahim Shaker, Dr. Eng.Sherien El Agroody, Eng. Mohamed Ramadan, and all the sanitary engineering group and public works dept. members, as well as all the administrative team in cultural affairs)

Last but not least, I would like to thank my whole family specially my mother and sister for their patience and their support in all difficult and hard times.

Very special thanks to my small family that suffered through this journey for my sake, my daughter Jana and my caring husband.

Sondos Abd El-Hakeem Saad

Abstract

Saline wastewaters can be produced from industrial activities, the use of seawater and brackish water in urban environments, or due to saline water infiltration into the sewer system. This can lead to sulfate-rich wastewater that under anaerobic conditions and the presence of electron donors can result in sulfide production. The direct use of saline water as secondary quality water for sanitation is a promising alternative to alleviate fresh water stress. However, sulfate-rich wastewater is produced due to the application of this approach. In the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI) process, biological carbon and nitrogen removal is efficiently achieved for saline sewage treatment, but does not account for P-removal. The first part of this study focuses on evaluating the sulfide effects on the biological phosphorus removal process which is a key process to prevent eutrophication on surface-water bodies.

In this regard, both anaerobic and aerobic short-term sulfide inhibition tests were performed on an enriched culture of phosphorus-accumulating organisms (PAO) at different pH, and sulfide concentrations. It was found that sulfide had a negative effect on PAO activity, and the effect seemed to be related to un-dissociated H₂S concentration.

50% inhibition of the maximum acetate uptake rate of PAO was observed at around 60 mg H₂S/l regardless the pH. With increasing H₂S concentrations, higher phosphate release to HAc uptake ratios were observed likely due to extra need for additional energy for cell detoxification. P-release for detoxification energy requirements (Pdet) were estimated relative to the total P-release rate at a zero H₂S level. Increasing H2S increased Pdet until a maximum of 50%, while a further increase in H₂S caused a decrease in Pdet which may have been compensated by higher glycogen utilization. Mathematical expressions have been proposed, which could satisfactorily describe the sulfide effects on acetate consumption and P-release..

The results showed that a reversible inhibition of aerobic P- uptake possibly occurred below a certain threshold concentration between 20 and

25 mg H2S/L. With the increase of sulfide concentrations a decrease in the aerobic P-uptake was observed, and total cells inactivation likely took place at H2S concentration ranged from 135 to 150 mg H2S/L. The residual P uptake activity occurring below the threshold concentration was mathematically modelled and 50% of P uptake activity was reached at sulfide concentration of only 11 mgH2S/L.

Implementation of these models into activated sludge models, can help to describe the kinetics of PAO when treating wastewater, containing sulfide. Nevertheless, the irreversible inhibition of aerobic PAO activity indicates the high possibility of EBPR failure under sulfide rich conditions. The results suggests that in the presence of sulfide aerobic metabolism of PAO would be the limiting step in the BPR process. Accordingly, the development of a potential SANIP process (SANI plus biological Premoval), could not be a promising solution, however, along the long term exposure of PAO to sulfide, adaptation was thought to be possible, and it was necessary to assess the feasibility of coupling both sulfate reduction and biological phosphorus removal processes, with the focus on the long term effect of sulfide on enriched cultures of phosphorus-accumulating organisms (PAO).

In this study, a quite low concentration of sulfide of 7 mgTS/L was chosen as a start to give a chance for adaptation, however, it was demonstrated that sulfide had detrimental effect on enriched PAO especially anoxically even at that low concentration. Sulfide caused irreversible inhibition to PAO as no recovery of activity was observed after decoupling the reactors. Highly enriched unadapted PAO culture suffered cell inactivation which might hinder the potential coupling of phosphorus removal to SANI process unless, the activated sludge acts differently compared to enriched PAO that was highly sensitive to sulfide exposure.

As a result, the evaluation of the effects of sulfide on the performance of the percentage of (PAO) in the activated sludge was advantageous towards promoting the evolution of the SANIP process. In this regard, short-term sulfide inhibition kinetic tests were performed at different sulfide and MLSS concentrations. It was demonstrated in this study that activated sludge was quite not affected by sulfide under anaerobic and

aerobic conditions and much tolerant to sulfide exposure compared to highly enriched PAO. Which is either due to the adaptation to sulfide shocks in WWTP or the big diversity of microorganisms that live in symbiosis with PAO and are able to use sulfide as electron donors e.g sulfide oxidizing bacteria under aerobic conditions or autotrophic denitrifiers under anoxic conditions. It was concluded that the implementation of SANIP process is a promising solution for nutrient removal when PAO is supported by a big consortium of bacteria as in the activated sludge.

Earlier in this study it was observed that under anaerobic conditions, and stress conditions due to sulfide exposure, there was a shift to GAO metabolism at high sulfide concentrations which agreed with recent experimental observations that indicated that some PAO cultures were able to perform a GAO phenotype under poly-P limiting conditions; i.e. accumulate acetate under anaerobic conditions without involvement of polyphosphate metabolism.

The present study investigated the ability of PAO clade I and II to adopt a GAO phenotype during long-term reactor operation under non-limiting poly-P conditions and during short-term experiments under poly-P limited conditions. Short-term batch tests demonstrated that both *Candidatus* Accumulibacter Phosphatis Clade I and II were able to gradually shift their metabolism from a PAO or mixed PAO-GAO metabolism to a GAO metabolism when the poly-P content decreased. However, under poly-P depleted conditions, the HAc-uptake rate by PAO I was 4 times lower than for PAO II, indicating that PAO II has a strong competitive advantage over PAO I during P-limiting conditions. Thus, from a practical perspective, this study also indicates that the efficiency of P-release processes for biological P-recovery or combined biological and chemical P removal systems, may be significantly affected by the type of PAO that prevails in the system.

Having the highly enriched PAO I culture (99%) in this study, inspired the idea of the last part of this research. Different engineering processes and system configurations were developed to achieve simultaneous nitrogen and phosphorus removal biologically to favor the growth of DPAOs (PAO I) to take the advantage of using the same COD in the influent for both nitrogen and phosphorus removal to reduce costs, save energy of aeration, and take the advantage of lower sludge yield for less sludge production. Few studies were skeptical about their denitrification capacity of nitrate. However, it was difficult to clearly prove it due to the lack of pure PAO I culture. Hence, experiments were conducted to examine the denitrification capacity of highly enriched pure PAO I culture (>99%) fed with either acetate or propionate before and after acclimatization. When nitrate was the electron acceptor, no P uptake was observed even after acclimatization. On the other hand, simultaneous P and nitrite uptake was found with nitrite as an electron acceptor.

This study suggests that accumulation of nitrite in denitrifying systems is essential for anoxic phosphate removal by denitrifying PAO allowing simultaneous P and N removal over nitrate through the symbiosis of PAO with flanking denitrifying bacteria which denitrify from nitrate to nitrite to be further used by PAOs.

Keywords: SULFIDE; SULFATE SALINITY; SANI; NUTRIENTS REMOVAL, PHOSPHATE ACCUMULATING ORGANISMS; PAO I; ACCUMULIBACTER CLADE I; DENITRIFYING PAO; MODELING.

Table of Contents

Statement	i
Acknowledgment	ii
Abstract	iv
Table of Contents	viii
List of Figures	XV
List of Tables	XX
List of Symbols	xxi
List of Abbreviations	xxiv
Chapter 1 Introduction	1
1.1 Global Perspective of Water	1
1.1.1 The Water Cycle	1
1.1.2 Water Supply and Sanitation	2
1.1.3 Water shortage	3
1.2 Water demand reduction strategies	4
1.2.1 Development of water saving technologies	4
1.2.2 Restriction of consumers water use	5
1.3 Water supply increase strategies	6
1.3.1 Production of drinking water from alternative water source	es6
1.3.2 Secondary quality water from alternative water sources	12
1.4 Problem Identification	15
Chapter 2 Literature Review	17
2.1 Background	18
2.1.1 Conventional urban water cycle	18
2.1.2 Introducing seawater to the urban water cycle	19
2.1.3 SANI process	21
2.1.4 Other sources of sulfate salinity in wastewater	24
2.1.5 Phosphorus removal	24
2.2 Glycogen accumulating organisms metabolism	35
2.3 Sulfate reducing bacteria metabolism	36
2.4 Factors affecting the metabolism of PAO and SRB	37
2.4.1 Salinity	37
2.4.2 Carbon source	40

2.4.3 COD availability(COD to P or to Sulfate ratio)	42
2.4.4 Sulfide	
2.4.5 pH range (according to carbon source)	48
2.4.6 Dissolved oxygen	48
2.4.7 SRT and HRT	52
2.5 Symbiosis and competition between SRB,PAO,GAO,	and other
anaerobic bacteria	53
2.6 The challenge of SANIP process	53
2.7 Research objectives	54
2.8 Approach	58
Chapter 3 Sulfide Effects on the Anaerobic Metabolism of	Phosphate
Accumulating Organisms	62
3.1 Introduction	64
3.2 Materials and methods	65
3.2.1 Enrichment of PAO, and Operation of Parent SBR	65
3.2.2 Short Term Anaerobic Batch Experiments	66
3.3 Anaerobic Parameters of interest	68
3.4 Data analysis and mathematical modeling	68
3.4.1 Sulfide Speciation Model	68
3.4.2 Modelling Relative Acetate Uptake Activity	70
3.4.3 Modelling Phosphate Release for Detoxification	71
3.5 Analytical Procedure	73
3.6 Microbial Analysis	73
3.7 Results	74
3.7.1 PAO Enrichment	74
3.7.2 Batch experiments	78
3.7.3 Sulfide effect on PAO kinetics	78
3.7.4 Sulfide effect on PAO detoxification	81
3.7.5 Sulfide effect on PAO stoichiometry	82
3.8 Discussion	85
3.8.1 Enrichment of PAO	85
3.8.2 The inhibitory effect of sulfide on acetate utilization	n by PAOs
	86
3.8.3 The effect of sulfide on P release	90
3.8.4 Sulfide effect on stoichiometry	90

3.8.5 The effect of sulfide on detoxification P release and glycoger
consumption9
3.8.6 Modeling the effect of sulfide on detoxification of PAOs92
3.8.7 Model Validation94
3.8.8 Comparison of the effect of sulfide on different organisms94
3.8.9 Comparison of the effect of different inhibitors on PAO95
3.9 Conclusion 100
3.10Supplementary material
3.10.1 Sulfide speciation
3.10.2 Acetate uptake activity at a certain total sulfidence
concentration
3.10.3 Phosphate released for detoxification
Chapter 4 Sulfide Effects on the Aerobic Metabolism of Phosphat
Accumulating Organisms
4.1 Introduction
4.2 Materials and methods
4.2.1 Enrichment of PAO110
4.2.2 Short Term Aerobic Batch Experiments
4.2.3 Aerobic Parameters of interest
4.2.4 Mathematical Models
4.2.5 Analytical Procedure
4.2.6 Analytical Procedure
4.3 Results
4.3.1 PAO Enrichment
4.3.2 pH effect on P-uptake under sulfide rich conditions
4.3.3 The P-uptake behavior under sulfide rich conditions12
4.3.4 Sulfide effect on total P-uptake removal efficiency12
4.3.5 Determination of the sulfide threshold concentration for P
uptake124
4.3.6 Sulfide effect on residual P-uptake rate
4.3.7 Sulfide effect on Oxygen consumption profiles120
4.4 Discussion 120
4.4.1 Comparison of effect of different inhibitors on PAO
aerobically120

4.4.2 Comparison of effect of sulfide on various aerobic mi	cro
organisms1	127
4.4.3 Modeling the effect of sulfide on P-uptake by PAOs	128
4.5 Conclusion	133
Chapter 5 Coupling Sulfate Reducing Bacteria Reactor to Enrich	hed
Phosphate Accumulating Bacteria Reactor in Lab Scale	135
5.1 Introduction	136
5.2 Materials and methods	138
5.2.1 Enrichment of PAO	138
5.2.2 Enrichment of Sulfate Reducing Bacteria	140
5.2.3 Operation of Coupled Systems with Enriched PAO	141
5.2.4 Parameters of interest	145
5.2.5 Analytical Procedure	145
5.3 Results	145
5.3.1 PAO Enrichment	145
5.3.2 SRB Enrichment	147
5.3.3 Effect of long term sulfide application (through coupling)	on
PAO kinetic rates, along operation and recovery	148
5.3.4 Effect of long term sulfide application (through coupling)	on
PAO stoichiometry, through operation and recovery	150
5.4 Discussion	151
5.4.1 Enrichment of cultures	151
5.4.2 Co-existence of PAO and SRB cultures or coupling b	oth
systems1	153
5.4.3 Effect of sulfide on anaerobic kinetics of enriched PAO cult	ure
in long term experiments	154
5.4.4 Effect of sulfide on anoxic kinetics of enriched PAO culture	e in
long term experiments	155
5.4.5 Effect of sulfide on aerobic kinetics of enriched PAO culture	e in
long term experiments	155
5.5 Conclusion	156
Chapter 6 Sulfide Effect on Phosphorus Removal via Haarl	lem
Activated Sludge in A2O SBR in Lab Scale	157
6.1 Introduction	159
6.2 Materials and methods	161

6.2.1 Activated sludge161
6.2.2 Operation of the reactor162
6.2.3 Short term batch experiments under either Anaerobic, Anoxic
or Aerobic conditions164
6.2.4 Short term batch experiment of A2/O system164
6.2.5 Analytical Procedure165
6.3 Results
6.3.1 Experiments at MLSS =5000 mg TSS/L and at different sulfide
concentrations165
6.3.2 Experiments at MLSS =13000 mg TSS/L and different sulfide
concentrations168
6.4 Discussion
6.4.1 Comparison of effect of sulfide on Activated Sludge and Highly
Enriched PAO170
6.4.2 Effect of MLSS concentration on the biological phosphorus
removal process in presence of sulfide173
6.4.3 Expectations over the effect of sulfide on long term BPR in
activated sludge wastewater treatment plants174
6.5 Conclusion
Chapter 7 Comparison of Accumulibacter cladesperforming a glycogen
-accumulating organisms phenotype during Anaerobic Substrate
Uptake 176
7.1 Introduction
7.2 Materials and methods
7.2.1 Enrichment of the PAO cultures181
7.2.2 Poly-P depletion tests
7.2.3 Analysis
7.2.4 Determination of kinetic and stoichiometric parameters187
7.2.5 Estimation of the poly-P content
7.3 Results
7.3.1 Enrichment of the PAO cultures190
7.3.2 Anaerobic HAc uptake by PAO depleted in poly-P content 201
7.4 Discussion
7.4.1 PAO clades expressing a GAO metabolism during long-term
performance204

7.4.2 Intrinsic differences in stoichiometry of Accumulibacter clades
205
7.4.3 Effect of P-content on stoichiometry206
7.4.4 HAc uptake under poly-P depleted conditions207
7.4.5 Implications
7.5 Conclusions
Chapter 8 Denitrification Pathways of PAO I with Different Carbon
Sources 211
8.1 Introduction
8.2 Materials and methods
8.2.1 Enrichment of PAO214
8.2.2 Experimental phase I: Different electron donors and acceptors
216
8.2.3 Experimental phase II: Denitrification capacity after
acclimatization218
8.2.4 Parameters of interest
8.2.5 Microbial community investigation219
8.2.6 Analytical Procedure219
8.3 Results
8.3.1 PAO Enrichment and Cultivation under A/O and A2O modes
of operation220
8.3.2 Microbial Analysis224
8.3.3 Batch experiments with oxygen as an electron acceptor227
8.3.4 Activity tests to assess the denitrification activity of highly
enriched PAO with different e-donor in comparison to aerobic
activity228
8.4 Discussion
8.4.1 Enrichment of PAO I232
8.4.2 Microbial community structure before and after acclimatization
234
8.4.3 Aerobic activity with different electron donors in phase I 234
8.4.4 Denitrificiation activity with NO ₂ as an e-acceptor different C-
sources
8.4.5 Denitrification activity with NO ₃ and different electron donors
0.4.5 Demanded activity with 1403 and different election donors