PRODUCTION OF HEALTHY MODIFIED FERMENTED MILK SUPPLEMENTED WITH POTENT ANTIOXIDANT SOURCES

By

MARWA MOHAMED EL-SAID

B.Sc. Agric. Sc. (Dairy Science and Technology), Cairo Univ. (2004) M.Sc. Agric. Sc. (Dairy Science and Technology), Cairo Univ. (2011)

A Thesis Submitted in Partial Fulfillment of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Science (Dairy Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

2016

Approval Sheet

PRODUCTION OF HEALTHY MODIFIED FERMENTED MILK SUPPLEMENTED WITH POTENT ANTIOXIDANT SOURCES

By

MARWA MOHAMED EL-SAID

B.Sc. Agric. Sc. (Dairy Science and Technology), Cairo Univ. 2004 M.Sc. Agric. Sc. (Dairy Science and Technology), Cairo Univ. 2011

This thesis for Ph.D. degree has been approved by:

Dr. Fawzia Hassan Ragab Abd Rabo Prof. Emeritus of Dairy Science and Technology, Faculty of Agriculture, Cairo University Dr. Gehan Ali Mostafa Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Azza Mahmoud Farahat Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Hamdy Farag Haggag Prof. Emeritus of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University

Marwa M. El-Said (2016), Ph.D. Fac. Agric., Ain Shams Univ.

Date of Examination: / / 2016

PRODUCTION OF HEALTHY MODIFIED FERMENTED MILK SUPPLEMENTED WITH POTENT ANTIOXIDANT SOURCES

By

MARWA MOHAMED EL-SAID

B.Sc. Agric. Sc. (Dairy Science and Technology), Cairo Univ. 2004 M.Sc. Agric. Sc. (Dairy Science and Technology), Cairo Univ. 2011

Under the supervision of:

Dr. Hamdy Farag Haggag

Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Azza Mahmoud Farahat

Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Hala Mohamed Fakhr El-Din

Researcher Prof. of Dairy Science and Technology, Department of Dairy Science, National Research Center

Marwa M. El-Said (2016), Ph.D. Fac. Agric., Ain Shams Univ.

ABSTRACT

Marwa Mohamed El-Said: Production of Healthy Modified Fermented Milk Supplemented with Potent Antioxidant Sources. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2016.

The current study was designed to raise the antioxidant activity of low fat stirred yoghurt supplemented with natural sources of antioxidant (pomegranate peel (PP) and milk thistle seeds (MTS)) and raising its nutritive value by using whey protein concentrate (WPC). The PP (outside, inside and whole) were dried using oven (40°C/48 h.) and solar energy (50±2°C/24 h.). Aqueous and methanolic extracts were prepared from the dried peels, and their total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities (DPPH and ABTS), were determined. Both extracts of the dried whole peel showed the highest antioxidant activities as compared to other pomegranate peel extracts (PPE). Low fat stirred yoghurt was prepared from reconstituted skim milk powder (12% TS) supplemented with 5, 10, 15, 20, 25, 30 and 35% of the PPE. Increasing the conc. of PPE significantly increased its content of TPC, TFC and antioxidant activity until 25% PPE, but, further increase in the percentage of added PPE had insignificant effect. Addition of PPE had inhibited effect on the growth of yoghurt starter bacteria (S.thermophilus and L. delbrueckii subsp. bulgaricus) and it had insignificant effect on the chemical composition and sensory properties (appearance and color, body and texture and flavor) as compared to the control sample. Low fat stirred yoghurt supplemented with different concentration of WPC (0.25, 0.50, 0.75, 1.00, 1.25 and 1.5 g/100ml) had high TPC and antioxidant activity until 0.5 (g/100ml). Addition of WPC increased the total count of S.thermophilus and L. delbrueckii subsp.

Marwa M. El-Said (2016), Ph.D. Fac. Agric., Ain Shams Univ.

bulgaricus, and increased total solids, protein, lactose and fat% while it had insignificant effect on sensory properties until 0.5 (g/100ml). Milk thistle seeds extracted (MTSE) at 100°C had the highest TPC, TFC and antioxidant activity (DPPH and ABTS). Low fat stirred yoghurt supplemented with 25% PPE, 0.5 (g/100ml) WPC and MTSE (1, 1.5, 2, 2.5, 3, 3.5 and 4%) was manufactured. Increasing the concentration of MTSE increased TPC, TFC and antioxidant activity. During cold storage the TPC, TFC and antioxidant activity showed a gradually decrease for all yoghurt samples. Increasing the concentration of MTSE in yoghurt samples led to slight increase in total solids, lactose, fat and protein%, while these contents were slightly decreased during storage and there wasn't significantly difference during storage in fat%. Acidity% was decreased with increasing MSTE% and increased during storage. With increasing the MTSE conc. the counts of S.thermophilus, L. delbrueckii subsp. bulgaricus and molds and yeast were decreased and this also observed during storage at 5±1 °C for 15 days. There was a considerable decrease in the apparent viscosity of yoghurt samples with increasing the concentration of MTSE. Yoghurt samples with the different concentration of MTSE were accepted when fresh. While along the cold storage at 5°C for 15 days the sensory scores were decreased.

Key words: pomegranate peel extract (PPE), total phenolic content (TPC), total flavonoidscontent (TFC), antioxidant activity, whey protein concentrate (WPC) and milk thistle seeds extract (MTSE).

Marwa M. El-Said (2016), Ph.D. Fac. Agric., Ain Shams Univ.

ACKNOWLEDGMENT

First and before all, full praise and gratitude is to **ALLAH**, who granted me the ability to perform this thesis and helped me to pass safely through all the difficulties.

I wish to express my sincere gratitude to Dr. Hamdy Farag Haggag and Dr. Azza Mahmoud Farahat Professors of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for their supervision, invaluable expertise, guidance and encouragement throughout the course of my research. I also thank them for their patience and time in putting together my final thesis.

I also thank Dr. Hala Mohamed Fakhr El-Din and Ahmed Sad Gad; Dairy Science Department, National Research Centre, Cairo, for suggesting the subject of this work, kind supervision, long lasting beneficial instructions, continuous guidance and continuous encouragement during the course of this work.

Thanks are also extended to my friends in National Research Centre, Dokki, Cairo, for their co-operation during this work. Finally, my deepest gratitude is offered to my family; father, mother and brothers.

Marwa M. El-Said (2016), Ph.D. Fac. Agric., Ain Shams Univ.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	IX
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Antioxidants	5
2.2. Pomegranate peel (PP)	7
2.2.1. Antioxidant activity of PP	8
2.2.2. Antimicrobial effect of PP	10
2.2.3. Supplementation of some food with pomegranate	10
2.3. Whey protein concentrate (WPC)	12
2.3.1. Health benefits of whey protein	13
2.3.2. Application of WPC in dairy products	14
2.4. Milk thistle	15
2.4.1. Silymarin	16
2.4.2. The health benefits of silymarin	18
2.4.3. Application of milk thistle in food products	19
3. MATRIALS AND METHODS	20
3.1. MATERIALS	20
3.1.1. Skim milk powder	20
3.1.2. Whey protein concentrate (WPC)	20
3.1.3. Pomegranate fruits	20
3.1.4. Milk thistle seeds (MTS)	20
3.1.5. Yoghurt starter culture	20
3.2. Chemicals	21
3.3. METHODS	21
3.3.1. Preparation of PP powder	21
3.3.1.1 Oven drying	21

3.3.1.2. Solar drying	21
3.3.2. Preparation of pomegranate peels extracts (PPE)	22
3.3.3. Preparation of milk thistle seeds extracts (MTSE)	22
3.3.4. Determination of silymarin from MTSE by HPLC	22
3.3.5. Determination of total phenolic content (TPC)	22
3.3.6. Determination of total flavonoids content (TFC)	23
3.3.7. Evaluation of antioxidant activity	23
3.3.7.1. DPPH radical scavenging activity	23
3.3.7.2. ABTS*+ radical cation scavenging activity	24
3.3.8. Manufacture of low fat stirred yoghurt supplemented with PPE	24
3.3.9. Manufacture of low fat stirred yoghurt supplemented with WPC	24
3.3.10. Preparation of yoghurt for antioxidant analysis	25
3.3.11. Chemical composition of PP and MTS	25
3.3.12. Microbiology analysis	25
3.3.12.1. S.thermophilus count	25
3.3.12.2. L.delbrueckii delbrueckii subsp. bulgaricus count	26
3.3.12.3. Yeasts and moulds count	26
3.3.13. Chemical composition of yoghurt samples	27
3.3.14. Apparent viscosity measurement	27
3.3.15. Sensory Evaluation	27
3.3.16. Statistical analysis	27
4. RESULTS AND DISCUSSION	28
4.1. Preliminary experiments on dried pomegranate peels (inside,	28
outside and whole) extracts	20
4.1.1. Total phenolic content (TPC)	28
4.1.2. Total Flavonoids content (TFC)	29
4.1.3. Antioxidant activity	31
4.1.3.1. DPPH radical scavenging activity (RSA)	31

4.1.3.2. ABTS*+ radical scavenging antioxidant	32
4.1.4. Chemical composition of oven dried whole pomegranate	2.4
peel	34
4.2. Low fat stirred yoghurt supplemented with different conc. of	25
pomegranate peel extract	35
4.2.1. TPC, TFC and antioxidant activity (RSA and ABTS%) of	
low fat stirred yoghurt supplemented with different conc.	36
of pomegranate peel extract	
4.2.2. Total counts of S.thermophilus and L. delbrueckii subsp.	
bulgaricus of low fat stirred yoghurt supplemented with	39
different conc. of pomegranate peel extract	
4.2.3. Chemical composition of fresh low fat stirred yoghurt	
supplemented with different conc. of pomegranate peel	41
extract	
4.2.4. Sensory evaluation of low fat stirred yoghurt	
supplemented with different conc. of pomegranate peel	43
extract	
4.3. Low fat stirred yoghurt supplemented with different conc. of	44
whey protein concentrate	44
4.3.1. TPC and antioxidant activity (RSA and ABTS%) of low	
fat stirred yoghurt supplemented with different conc. of	44
whey protein concentrate	
4.3.2. Total counts of <i>S.thermophilus</i> and <i>L. delbrueckii</i> subsp.	
bulgaricus of low fat stirred yoghurt supplemented with	48
different conc. of whey protein concentrate	
4.3.3. Chemical composition of low fat stirred yoghurt	
supplemented with different concentration of whey	49
protein concentrate	
4.3.4.Sensory evaluation of low fat stirred yoghurt	
supplemented with different conc. of whey protein	51
concentrate	

4.4. Manufacture of low fat stirred yoghurt supplemented with	
pomegranate peel extract, whey protein concentrate and	52
different conc. of milk thistle seeds extract	
4.4.1. Chemical composition of milk thistle seeds (MTS)	52
4.4.2. Effect of extraction temperature of MTS on TPC, TFC	50
and antioxidant activity (RSA & ABTS%)	53
4.4.3.TPC, TFC and antioxidant activity (RSA and ABTS%) of	
low fat stirred yoghurt supplemented with PPE, WPC and	5.0
different conc. of MTSE during storage at 5±1°C for 15	56
days	
a. Total phenolic content (TPC)	56
b.Total Flavonoid content (TFC)	58
c. DPPH Radical scavenging activity (RSA %)	60
d. ABTS radical scavenging activity	62
4.4.4. Determination quantity of silymarin (mg/100ml) in fresh	
low fat stirred yoghurt supplemented with different conc.	64
of MTSE by HPLC chromatography	
4.4.5.Chemical composition of low fat stirred yoghurt	
supplemented with PPE, WPC and different conc. of	66
MTSE during storage at 5±1°C for 15 days	
4.4.6. Total counts of S.thermophilus , L. delbrueckii subsp.	73
bulgaricus, mold and yeast	, 5
4.4.7. Apparent viscosity of low stirred yoghurt supplemented	
with PPE, WPC and different conc. of MTSE during	77
storage at 5±1°C for 15 days	
4.4.8. Sensory evaluation of low stirred yoghurt supplemented	
with PPE, WPC and different conc. of MTSE during	79
storage at 5±1°C for 15 days	
5. SUMMARY	82
6. REFERENCES	91

LIST OF TABLES

No	Title	Page
1	Total phenolic content (mg gallic acid/ g) of different peel parts prepared by two methods of	29
	drying and extraction.	
2	Total flavonoids content (mg rutin/ g) of different peel parts prepared by two methods of drying and	30
	extraction	
3	DPPH radical scavenging activity (RSA %) of different peel parts prepared by two methods of	32
	drying and extraction	
4	ABTS% radical scavenging of different peel parts	33
•	prepared by two methods of drying and extraction	33
5	Chemical composition of oven dried whole	35
	pomegranate peel	
6	TPC, TFC and antioxidant activity (RSA and	37
	ABTS %) of low fat stirred yoghurt supplemented	
	with different conc. of pomegranate peel extract	
7	Chemical composition of low fat stirred yoghurt	42
	supplemented with different conc. of pomegranate	
	peel extract	
8	Sensory evaluation of low fat stirred yoghurt	43
	supplemented with different conc. of pomegranate	
	peel extract	
9	TPC and antioxidant activity (RSA and ABTS%)	46
	of low fat stirred yoghurt supplemented with	
1.0	different conc. of whey protein concentrate	
10	Chemical composition of low fat stirred yoghurt	50

	supplemented with different conc. of whey protein concentrate	
11	Sensory evaluation of stirred yoghurt	51
	supplemented with different conc. of whey protein concentrate	
12	Chemical composition of milk thistle seeds (MTS)	52
13	Effect of extraction temperature of MTSE on TPC,	54
	TFC and antioxidant activity (RSA ³ & ABTS)	
14	TPC ¹ (equivalent mg gallic acid/g) of low fat	57
	stirred yoghurt supplemented with PPE, WPC and	
	different conc. of MTSE during storage at 5±1°C	
	for 15 days	
15	TFC (mg RE/g) of low fat stirred yoghurt	59
	supplemented with PPE, WPC and different conc.	
	of MTSE during storage at 5±1°C for 15 days	
16	DPPH radical scavenging activity (RSA%) of low	61
	fat stirred yoghurt supplemented with PPE ² , WPC ³	
	and different conc. of MTSE ⁴ during storage at	
	5±1°C for 15 days	
17	ABTS ¹ radical scavenging activity (%) of low fat	63
	stirred yoghurt supplemented with PPE ² , WPC ³	
	and different conc. of MTSE during storage at	
	5±1°C for 15 days	
18	The quantity of silymarin (mg/100ml) in fresh low	65
	fat stirred yoghurt supplemented with different	
	conc. of MTSE by HPLC chromatography	
19	Titratable acidity% of low fat stirred yoghurt	67
	supplemented with PPE, WPC and different conc.	
	of MTSE during storage at 5±1°C for 15 days	
20	pH of low fat stirred yoghurt supplemented with	68

	PPE, WPC and different conc. of MTSE during	
	storage at 5±1°C for 15 days	
21	Total solids% of low fat stirred yoghurt	69
	supplemented with PPE, WPC and different conc.	
	of MTSE ³ during storage at 5±1°C for 15 days	
22	Fat % of low fat stirred yoghurt supplemented with	70
	PPE ¹ , WPC ² and different conc. of MTSE during	
	storage at 5±1°C for 15 days	
23	Lactose% of low fat stirred yoghurt supplemented	71
	with PPE, WPC and different conc. of MTSE	
	during storage at 5±1°C for 15 days	
24	Protein% of low fat stirred yoghurt supplemented	72
	with PPE, WPC and different conc. of MTSE	
	during storage at 5±1°C for 15 days	
25	Total counts of molds and yeasts (log cfu/ml) of	76
	low fat stirred yoghurt supplemented with PPE,	
	WPC and different conc. of MTSE during storage	
	at 5±1°C for 15 days	
26	sensory evaluation of low fat stirred yoghurt	80
	supplemented with PPE, WPC and MTSE% during	
	storage (day) at 5±1°C	

LIST OF FIGURES

No.	Title	Page
1	Chemical structures of silymarin components	17
	TPC, TFC and antioxidant activity (RSA and ABTS	
2	%) of low fat stirred yoghurt supplemented with	38
	different conc. of pomegranate peel extract	
	Total counts of S. thermophilus and L. delbrueckii	
3	subsp. bulgaricus (log cfu/ml) of low fat stirred	40
	yoghurt supplemented with different conc. of	
	pomegranate peel extract.	
	TPC and antioxidant activity (RSA and ABTS%) of	
4	low fat stirred yoghurt supplemented with different	47
	conc. of whey protein concentrate	
	Total counts of S. thermophilus and L. delbrueckii	
5	subsp. bulgaricus of low fat stirred yoghurt	49
	supplemented with different conc. of WPC.	
	Effect of extraction temperature of MTSE on TPC,	55
6	TFC and antioxidant activity (RSA & ABTS%)	
	L. delbrueckii subsp. bulgaricus (log cfu/ml) of low	
7	fat stirred yoghurt supplemented with PPE, WPC and	74
	different conc. of MTSE during storage at 5±1°C for	
	15 days.	
	S.thermophilus counts (log cfu/ml) of low fat stirred	
8	yoghurt supplemented with PPE, WPC and different	75
	conc. of MTSE during storage at 5±1°C for 15 days	
9	Apparent viscosity of low fat stirred yoghurt	
	supplemented with PPE, WPC and different conc. of	78
	MTSE during storage at $5\pm1^{\circ}$ C for 15 days	

LIST OF ABBREVIATIONS

PPE Pomegranate peel extract

PP Pomegranate peel
PPs Pomegranate peels
PJ pomegranate juice
AA Antioxidant activity

Conc. Concentration WP Whey protein

WPC Whey protein concentrate

MT Milk thistle

MTSE Milk thistle seeds extract

MTS Milk thistle seeds

ABTS 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)

DPPH 2,2-diphenyl-1- picrylhydrazyl

TFC Total flavonoid content
TPC Total phenolic content

RSA Radical-scavenging antioxidant

GAE Gallic acid equivalent

HPLC High performance liquid chromotography

HIV The human immunodeficiency virus

HCV Hepatitis C virus
 β-Lg Beta lactoglobulin
 FFA Free fatty acids

g Gram Hour L Litter

mg Milligram ml Milliliter

RE Rutin equivalent

min Minute

Marwa M. El-Said (2016), Ph.D. Fac. Agric., Ain Shams Univ.