
بسم الله الرحمن الرحيم

حدق الله العظيم

Study Of The Relation Of Serum Cholesterol & Serum Albumin As Indicators Of Nutritional Status To Parameters Of Iron Metabolism In CRF Patients On Regular Hemodialysis

Thesis submitted for partial fulfillment of the master degree In internal medicine

By

Ahmed Said Mohamed Shaaban M.B.B.Ch

Supervised by

Prof. Dr. Dawlat Abd El Hamid Blal
Professor of Internal Medicine & Nephrology
Faculty of Medicine
Cairo University

Dr. Yasser Mohamed Abd El Hamid
Lecturer of Internal Medicine & Nephrology
Faculty of Medicine
Cairo University

Cairo University
Faculty of Medicine
2010

Acknowledgment

It gives me great honor to acknowledge this research to

MY SUPERVISOR PROFESSORS

who were of great help for me.

ALSO it will be of my pleasure to present not only this research but all my life to

MY PARENTS.

Who are the mercy of god and who had and still supporting me.

God give them health and extended life.

AND to

MY FIANCÉE,

The shinning future.

Abstract

Malnutrition in HD patients is common The predialysis s. albumin and s. cholesterol are useful screening tools for detecting malnutriton, This Study assesses the relation of serum albumin and serum cholesterol as indicators of nutritional status to parameters of iron metabolism in one hundred HD patients and concludes that: Serum albumin level tends to be normal in MHD patients with CRP –ve, There is a positive correlation between serum albumin and hemoglobin in MHD patients and recommends that In absence of inflammatory signs, serum albumin and serum cholesterol should not be relied upon in interpretation of anemia and iron parameters in patients on MHD

Key words: Malnutrition, Maintenance Hemodialysis , Iron Parameters ,S.Albumiun , S.Cholesterol

Index

NO	Title	Page
1	English Cover	1
2	Acknowledgment	II
3	Abbreviation	Ш
4	Introduction	1
5	Aim Of The Work	6
6	Review	8
7	- Chapter 1	9
8	- Chapter 2	43
9	- Chapter 3	67
10	- Chapter 4	83
11	Subject and Method	123
12	Results	142
13	Discussion	156
14	Conclusion	169
15	Recommendations	172
16	English Summary	174
17	Reference	180
18	Index	IV
19	Arabic Summary	V
20	Arabic Cover	VI

Table Index

No	Table Title	Page
1	table1: Causes Of Wasting And PEM In Dialysis Patient	14
	table 2: Nutritional Intakes For Healthy Subjects And Chronic Renal	
2	Failure Patients Before And During Maintenance Dialysis	15
	Treatment	
3	table 3: Potential Causes Of Reduced Nutrient Intake And Anorexia	17
O	In Hemodialysis Patients	.,
4	table 4: Possible Causes Of Inflammation In Patients With	24
7	ESRD	27
	table 5: Acute-Phase Reactants For Which Blood Concentrations	
5	Are Measured As Markers Of Inflammation In Patients With Renal	25
	Insufficiency	
6	table 6: Proposed Features Of Type 1 And Type 2	32
O	Malnutrition	32
7	table 7: Unambiguous Markers Of Nutrition Or	35
,	Inflammation	33
8	table 8: Ambiguous Markers That Correlate With Either Malnutrition	36
O	Or Inflammation	30
9	table 9: Recommended Measures For Monitoring Nutritional	45
5	Statue	40
	table10: proposed values and limitations of serum laboratory	
10	markers used for nutritional assessment in chronic hemodialysis	46
	patients	
	table 11:particularities to be considered in the use of nutrient	
11	intake assessment methods for chronic hemodialysis	54
	patients	

No	Table Title	Page
	. table12: limitations of npna in the estimation of protein	
12	intake	56
13	table 13:selected anthrompometric measures	62
14	table 14: anthropometric main limitations	63
15	table15: markers of fe stores in patients with ckd	96
16	table 16: conditions that may be associated with hyperferritinemia in patients with ckd	106
17	table 17: interpretation of serum ferritin levels in ckd patients who undergo maintenance dialysis treatment	109
18	table 18: description of the patients enrolled in the study	127
19	table 19: relation between Hb and demographic data in all patients	144
20	table 20: mean and sd of laboratory parameters of enrolled patients	145
	table21: correlations of iron parameters and nutritional parameters	
21	in - all	147
	cases	
22	table 22 :correlations of iron parameters and nutritional parameters	147
	in group(a) correlations - hb < 10g	
23	table 23 :correlations of iron parameters and nutritional parameters in group(b) correlations - hb 10g or more	147

Figure Index

NO	Figure title	Page
1	Figure 1:Oxidative stress in ESRD	26
2	Fig. 2. The vicious circle of malnutrition, inflammation and atherosclerotic cardiovascular disease (MIA syndrome) in patients with chronic renal failure	31
3	Fig. 3. Proposed relative contribution of non-inflammatory components and the inflammatory components of malnutrition in patients with type 1 and type 2 malnutrition Figure 4: Potential consequence s of chronic	33
4	inflammation	36
5	Fig 5.Schematic presentation of causes and consequences of MIA	39
6	Figure 6:Odds ratio for death, adjusted for age, sex, race, and underlying disease, according to the plasma albumin concentration in patients on maintenance hemodialysis Fig 7: flow chart for diagnosis and treatment of malnutrition	48
7	in CKD patients	82
8 9	Figure 8 : iron cycle in hemodialysisFigure 9:Cellular and humoral influence on hematopoitic stem cells	86 88
10 11	Figure 10: HCT and death rate in hemodialysis patients Figure 11:Anaemia and survival in ESRD patients close to start to dialysis	90 91
12 13	Figure 12: Monitoring iron status in hemodialysis patients Figure 13. Schematic representation of serum ferritin Figure 14: Dihydroxyfumarate (DHF) as the reducing agent	93 99
14	can be used for the reduction of Fe+3 to Fe+2in the iron- mineral core of ferritin	100
15	Figure 15: Ferritin	103
16	Figure 16. association between serum ferritin and all-cause mortality MHD patients in DaVita dialysis facilities Figure 17. association between serum iron saturation ratio	111
17	(ISAT) and all-cause mortality MHD patients in DaVita dialysis facilities	113

NO	Figure title	Page
18	Figure 18 : Correlation between serum cholesterol and serum ferritin among all cases	149
19	Figure 19: Correlation between serum cholesterol and transferring saturation among all cases	149
20	Figure 20: Correlation between serum cholesterol and serum iron among all cases	150
21	Figure 21: Correlation between serum cholesterol and Hb among all cases	150
22	Figure 22: Correlation between serum albumin and serum ferritin among all cases	151
23	Figure 23: Correlation between serum albumin and transferrin saturation among all cases	151
24	Figure 24: Correlation between serum albumin and serum iron among all cases	152
25	Figure 25: Correlation between serum albumin and Hb among all cases	152
26	Figure 26: Mean serum ferritin between cases with < 10g Hb and those with 10g or more	153
27	Figure 27: Mean S. Ca between cases with < 10g Hb and those with 10g or more	153
28	Figure 28: Mean S. Cholesterol between cases with < 10g Hb and those with 10g or more	154
29	Figure 29: Mean S. Alb between cases with < 10g Hb and those with 10g or more	154
30	Figure 30: Mean S. Cr. between cases with < 10g Hb and those with 10g or more	155

Introduction

Malnutrition in hemodialysis patients is common and may affect as much as one third of the dialysis population. Protein-malnutrition is a major risk factor for morbidity and mortality in dialysis patients. There are several objective methods for assessing the nutritional status; however, all have shortcomings that hamper their systematic clinical application (Kalantar Zadeh et al., 1998).

The predialysis or stabilized serum cholesterol concentration may be a useful screening tool for detecting chronically inadequate Individuals protein-energy intakes. undergoing maintenance hemodialysis who have low-normal (less than 150 to 180 mg/dL) nonfasting serum cholesterol have higher mortality than do those with higher cholesterol levels. As an indicator of protein-energy nutritional status, the serum cholesterol concentration is too insensitive and nonspecific to be used for purposes other than for nutritional screening, and maintenance dialysis patients with serum cholesterol concentrations less than 150 to 180 mg/dL should be further evaluated for nutritional deficits as well as for other comorbid conditions (NKF K/DOQI 2006).

Serum albumin level has been used extensively to assess the nutritional status of individuals with and without chronic renal failure (CRF). Hypoalbuminemia is highly predictive of future mortality risk when present at the time of initiation of chronic dialysis as well as during the course of maintenance dialysis. Although no single ideal measure of nutritional status exists, the serum albumin concentration is considered to be a useful indicator of proteinenergy nutritional status in maintenance dialysis patients. The extensive literature, in individuals with or without renal failure, relating serum albumin to nutritional status, and the powerful association between hypoalbuminemia and mortality risk in the maintenance dialysis population, strongly support this contention. In addition, the measurement of serum albumin levels is inexpensive, easy to perform, and widely available. So a predialysis or stabilized serum albumin equal to or greater than the lower limit of the normal range (4.0 g/dl is the outcome goal) and individuals with a predialysis or stabilized serum albumin that is low should be evaluated for protein-energy malnutrition. Presence of acute or chronic inflammation limits the specificity of serum albumin as a nutritional marker. Positive acute-phase proteins are not nutritional parameters but may be used to identify the presence of inflammation in individuals with low serum albumin as Serum albumin concentrations are inversely correlated with serum levels of positive acute-phase proteins (eg, C-reactive protein [CRP])

(NKF K/DOQI, 2006).

IRON METABOLISM

Iron is a critical body substance, transporting oxygen to tissues via hemoglobin and functioning as a cofactor in a number of enzyme systems. Iron is stored in reticuloendothelial cells of the liver, spleen, and bone marrow bound to ferritin and hemosiderin. This storage iron constitutes one third of the 3 to 4 g of total body iron. The remaining iron is present in erythropoietic tissue or red blood cells (RBCs). The majority of circulating iron is carried by transferrin, although at any one time, only 3 to 4 mg of iron are present on transferrin. Ingested iron varies from very small amounts up to 200 mg in end-stage renal disease patients given supplements. However, only 1% to 2% of this iron is absorbed.

Internal iron exchange between the erythroid marrow, circulating red blood cells, and the reticuloendothelial system involves 20 mg or more of iron daily. In the absence of rHuEPO, patients with advanced renal disease have less iron exchanged from the erythroid marrow to RBCs and more stored in the reticuloendothelial system. When the production of RBCs is stimulated by rHuEPO, internal iron exchange in dialysis patients is similar to that seen in normal patients, although the reticuloendothelial system may still have a greater retention of iron than seen in patients with normal renal function (Nissenson A & Strobos J, 1999).

Assessment of Iron Status

Currently, the two best tests of iron status are the percent TSAT and the serum ferritin. The percent TSAT (serum iron multiplied by 100 and divided by total iron binding capacity [TIBC]) reflects iron that is readily available for erythropoiesis. The TIBC essentially measures circulating transferrin. Normally there is a diurnal variation in the level of serum iron and, thus, the TSAT. Since blood for these tests is generally obtained at the same time of day in relation to either clinic or dialysis visits, serial measurements of TSAT typically are not affected by this diurnal variation

(NKF K/DOQI, 2006).

Ferritin Whereas TSAT reflects iron that is readily available for erythropoiesis, serum ferritin reflects storage iron, i.e., iron that is stored in liver, spleen, and bone marrow reticuloendothelial cells. As is the case with the TSAT, the serum ferritin level is most accurate as a predictor of iron deficiency or iron overload when it is extremely

low or extremely high, respectively. Just as serum ferritin is not perfectly sensitive; it also is not perfectly specific. In part, this is due to the fact that, in addition to reflecting body iron stores, serum ferritin also is an acute phase reactant. As such, it can increase in the setting of either acute or chronic inflammation

(NKF K/DOQI, 2006).

Aim of the work