

Evaluation of Some Mechanical and Physical Properties of Glass-Ionomer Restorative Material Modified with Zirconium Dioxide Nanoparticles

Thesis

Submitted to the Bio-Materials Department, Faculty of dentistry, Ain -Shams University in partial fulfillment for the Master Degree in Bio-Materials science

By

Dhafer Abdulwasea Qasem Alshaibani

BDSc: 2004 (Volgograd University-Russia)

Faculty of Dentistry
Ain-shams University
2017

Supervised by:

Dr. Mohammed Salah Abd El-Aziz Nassif

Associate Professor of Bio-Materials Science
Bio-Materials Department
Faculty of Dentistry
Ain-Shams University

Dr. Dina Ahmed El-Refai

Associate Professor of Bio-Materials Science
Bio-Materials Department
Faculty of Dentistry
Ain-Shams University

Faculty of dentistry Ain Shams University 2017

Evaluation of Some Mechanical and Physical Properties of Glass-Ionomer Restorative Material Modified with Zirconium Dioxide Nanoparticles

A research project submitted to the Bio-Materials Department, Faculty of dentistry, Ain -Shams University in partial fulfillment for the Master Degree in Bio-Materials science

By

Dhafer Abdulwasea Qasem Alshaibani

BDSc: 2004 (Volgograd University-Russia)

Supervisors

Mohammed Salah Abd El-Aziz Nassif

Associate Professor of Bio-Materials Science
Bio-Materials Department
Faculty of Dentistry
Ain-Shams University

Dina Ahmed El-Refai

Associate Professor of Bio-Materials Science Bio-Materials Department Faculty of Dentistry Ain-Shams University

> Faculty of Dentistry Ain-shams University 2017

Dedication

I would like to dedicate this work to my wonderful **mother** and soul of my **father**, to whom I owe everything and the true reason behind my success.

I would like to thank my wonderful wife Rania, for her endless support and all the happy times.

Last but not least, to my adorable children,

Ahmed, Gnat, Noran, who are the main source of happiness in our life.

Acknowledgement

I would like to express my grateful appreciation and thanks to **Dr. Mohammed Salah Nassif**, Associate Professor Bio-Materials Science, Bio-Materials Department, Faculty of Dentistry, Ain-Shams University, for his support, guidance and generous supervision and encouragement during this work.

Deep gratitude, and heartfelt thanks to **Dr**. **Dina Ahmed El-Refai**, Associate Professor Bio-Materials Science, Bio-Materials Department, Faculty of Dentistry, Ain-Shams University, for great help, encouragement and valuable guidance to me.

Finally, I would like to express my deep heartily thank to the staff members of Bio-Materials Department, Faculty of Dentistry, Ain-Shams University, for their helpful during the achievement of this study.

List of contents

Subject	Page
List of contents	I
List of tables	II
List of figures	IV
Introduction	1
Review of literature	4
Aim of the study	38
Material and methods	39
Statistical analysis	64
Result	65
Discussion	86
Summary and Conclusions	97
Recommendation	101
References	103
Arabic summary	

List of tables

Subject	Page
Table (1): Materials used in this study	39
Table (2) : Variables of the study	47
Table (3) : Factorial design and variable interactions	48
Table (4): Means, standard deviations (SD) and standard errors (SE) of mini-flexural strength (MPa) of glass ionomer cement modified with ZrO_2NP .	66
Table (5): Comparison of mini-flexural strength(MPa) mean values ±SD between experimental and control groups ranked from lower to higher.	67
Table (6): Means, standard deviations (SD) and standard errors (SE) of compressive strength (MPa) of glass ionomer cement modified with ZrO ₂ NP.	70
Table (7): Comparison of compressive strength (MPa) mean values ±SD between experimental and control groups ranked from lower to higher.	71

Table (8): Means, standard deviations (SD) and standard errors (SE) of surface hardness (VHN) of glass ionomer cement modified with ZrO ₂ NP.	74
Table (9): Comparison of surface hardness VHN mean values ±SD between experimental and control groups ranked from lower to higher.	75
Table (10): Means, standard deviations (SD) and standard errors (SE) of water sorption ($\mu g/mm^3$) of glass ionomer cement modified with ZrO_2NP .	78
Table (11): Comparison of water sorption (µg/mm³) mean values ±SD between experimental and control groups ranked from lower to higher.	79
Table (12): Means, standard deviations (SD) and standard errors (SE) of solubility ($\mu g/mm^3$) of glass ionomer cement modified with ZrO_2NP .	82
Table (13): Comparison of solubility (μ g/ mm ³) mean values \pm SD between experimental and control groups ranked from lower to higher.	83

List of figures

Subject	Page
figure (1): Zirconia naoparticles	39
Figure (2): X-ray diffractometer (panalytical, x pert pro)	40
Figure (3): X-ray diffraction of zirconia	41
Figure (4): SEM (FEI, Inaspect S, USA)	42
Figure (5): SEM photomicrograph for determination	43
of zirconium dioxide nanoparticles size.	

Figure (6): SEM photomicrograph showing uniform distribution of ZrO ₂ nanoparticles within blended mix.	45
Figure (7): Teflon mold used for Specimens' preparation for mini- flexural strength testing.	49
Figure (8): Polyester strip and a glass slide	50
Figure (9): The load used for pressing the glass ionomer cement in the mold.	51
Figure (10): Glass ionomer specimen for mini-flexural strength testing.	52
Figure (11): Caliper used to check Specimens' dimensions.	52
Figure (12): Universal Testing Machine and load applicator used for mini-flexural strength testing.	54
Figure (13): Three point bending test.	54