

Ain Shams University Faculty of Engineering Department of Electrical Power and Machines

Impact of Defective DG on Distribution System Performance

By Abdulsalam Arif Ali AL-Oukili

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science - Electrical Engineering Electrical Power& Machines

Supervised by

Prof. Dr. Metwally Awad Al-Sharkawy

Faculty of Engineering, Ain Shams University

Dr. Mahmoud Abdallah Attia Ibrahim

Faculty of Engineering, Ain Shams University

Cairo 2018

Ain Shams University Faculty of Engineering Department of Electrical Power and Machines

Impact of Defective DG on Distribution System Performance

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science - Electrical Engineering Electrical Power& Machines

By Abdulsalam Arif Ali Aloukili

B.Sc. Electrical Engineering, : Faculty of Engineering, OMAR AL-MUKHTAR UNIVERSITY- LIBYA ,2014

Examiners Committee

Title, Name & Affiliation	Signature
Prof. Dr. / Elsaid A. Osman	
Faculty of Engineering, Al-Azhar University	
Prof. Dr. / Almoataz Youssef Abdelaziz	
Faculty of Engineering, Ain Shams University	
Prof. Dr. / Metwally Awad Al-Sharkawy	
Faculty of Engineering, Ain Shams University	

Date: / / 2018

Researcher information

Name : ABDULSALAM ARIF ALI

ALOUKILI

Date of birth : 9/8/1990

Place of birth : DERNAH

Academic Degree : B.Sc. in Electrical Engineering.

Field of Specialization : Electrical Power and Machines

University issued the degree: Faculty of Engineering, OMAR

AL-MUKHTAR UNIVERSITY/

DERNAH / LIBYA

Date of issued degree : 2013

Statement

This thesis is submitted as a partial fulfillment of the Requirement for the Degree of Master of Science in Electrical Engineering Electrical Power& Machines Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Abdulsalam Arif Aloukili

Signature

Date: / / 2018

ACKNOWLEDGEMENT

Praise be to Allah so Much is fitting for His greatness and majesty, because guided us to Islam and taught us from the knowledge of the world what is good for us..

At the beginning, all thanks and appreciation to my supervisor prof. Dr Metwally Awad AL-Sharkawy, Electrical power and machines department Faculty of Engineering Ain-Shams University to support me where collected from him both the Science& Moral and support me in this work with continuous useful discussion. Asked from Allah to save him to help and support us in this life.

I would like to express my deep thanks and gratitude to Dr. Mahmoud Abdallah Attia, Electrical power and machines department Faculty of Engineering Ain-Shams University, for his supervision, continuous useful discussion, encouragement and motivation.

Deep gratitude and appreciation are also due to all the distinguished staff members in this great scientific edifice Ain Shams was honored to supervision me and everyone who lectured me. My father and mother, all thanks and appreciation, I ask Allah Almighty to keep you from all evil.

Abdulsalam Arif Aloukili

Table of Contents

Chapter 1: Introduction	1
1.1 Introduction	1
1.2 Conventional method to generate and transmit the	
power	1
1.3 Role of distributed generation in power system	3
1.4 Thesis Objectives	6
1.5 Thesis outlines	7
CHAPTER 2: Literature Review	9
2.1 Introduction	9
2.2 Types of distributed generation	10
2.2.1 Power produced from renewable resources	10
2.2.1.1 Photovoltaic	11
2.2.1.2 Wind energy	11
2.2.1.3 Fuel cells	13
2.2.1.4 Micro Turbines	14
2.2.1.5 Rotating machines	15
2.3 DG in distribution systems	16
2.4 Impact of distributed generation on voltage	
regulation	18
2.5 Impact distributed generation on power losses	19
2.6 Previous studies	20
2.7 General remarks	21
CHAPTER 3: DG Sizing and Siting Methodology	23
3.1 Introduction	23
3.2 System modelling	23
3.2.1 Power flow method	24
3.2.2 Types of DGs used in this work	26
3.2.3 Types of loads	27
3.3 Selection of load type	29

3.4 Sizing and siting for DGs in distribution system	33
3.4.1 sizing DG by using Harmony Search algorithm	34
CHAPTER 4: Effect of Partial Outage of DG on System	
Performance	47
4.1 Introduction	47
4.2 DG are supplying only active power	47
4.2.1 Results of study	48
4.2.2 Analysis of result	48
4.2.3 A suggested solution to compensate for	
outage DG (unity PF)	60
4.2.4 Analysis of result	60
4.3 DG are supply both active and reactive power	64
4.3.1 Results of study	65
4.3.3 Analysis of results	66
4.3.4 A suggested solution to compensate for	
outage DG (0.8 PF)	76
4.3.5 Results and Analysis	76
CHAPTER 5 : Conclusions and Recommendations	81
5.1 Conclusions	81
5.2 Recommendations for Future Work	82
References	83

List of Figures

CHA	PTER	1.	Introd	luction
\cup \cap A		1.	HILLOG	шскон

Fig.1.1 Traditional power flow from centralized to customers Fig.1.2 Power flow from two direction centralized plant	2
and DG on customer side	4
CHAPTER 2: Literature Review	
Fig. 2.1 Schematic diagram for a photovoltaic array Fig. 2.2 Schematic diagram for a wind energy Fig. 2.3 Schematic diagram for a fuel cells Fig. 2.3 Schematic diagram for a Micro gas Turbines	11 12 14 15
CHAPTER 3: DG Sizing and Siting Methodology	
Fig.3.1 IEEE-33 bus distribution system	24
Fig 3.2 Single-line diagram	25
Fig.3.3 Effect of load type on voltage profile for the distribution	
network at 100% loading	30
Fig 3.4 Effect of load type on voltage profile for the distribution	
network at 150% loading	31
Fig 3.5 Effect of load type on voltage profile for the distribution	
network at 250% loading	32
Fig 3.6 Effect of load type on voltage profile for the distribution	
network at 250% loading	33
Fig 3.7 Flow Chart of Harmony Search algorithm	35
Fig 3.8 Voltage profile at 100% loading	40
Fig 3.9 Voltage profile at 150% loading	41
Fig 3.10 Voltage profile at 200% loading	42
Fig 3.11 Voltage profile at 250% loading	44
Fig 3.12 Voltage profile at 100% loading	45

CHAPTER 4: Effect of Partial Outage of DG on System

Performance

Fig 4.1 Voltage profile at 100% loading (unity PF)	51
Fig 4.2 Voltage profile at 150% loading (unity PF)	54
Fig 4.3 Voltage profile at 200% loading (unity PF)	57
Fig 4.4 Voltage profile at 250% loading (unity PF)	59
Fig 4.5 AC bus and DC bus DG grid connection	65
Fig 4.6 Voltage at each bus for all state 100% loading (0.8 PF)	68
Fig 4.7 Voltage at each bus for all state 150% loading (0.8 PF)	71
Fig 4.8 Voltage at each bus for all state 200% loading (0.8 PF)	73
Fig 4.9 Voltage at each bus for all state 250% loading (0.8 PF)	75

List of Tables

CHAPTER 3: DG Sizing and Siting Methodology

Table 3.1Comparison between static and dynamic loads at 100%	
loading	30
Table 3.2 Comparison between static and dynamic loads at 150%	
loading	31
Table 3.3 Comparison between static and dynamic loads at 200%	
loading	32
Table 3.4 Comparison between static and dynamic loads at 250%	
loading	33
Table 3.5 Comparison of harmony improvisation and	
optimization techniques	34
Table 3.6 IEEE 33 bus load power flow without DGs	38
Table 3.7 Comparison between DGs at (high interconnection,	
2/3 rd from feeders& minimum voltage) 100% loading	39
Table 3.8 Comparison between DGs at (high interconnection,	
2/3 rd feeders & minimum voltage)150 % loading	41
Table 3.9 Comparison between DGs at (high	
interconnection,2/3 rd feeders& minimum voltage) 200 % loading	42
Table 3.10 Comparison between DGs at (high interconnection,	
2/3 rd feeders & minimum voltage) 250 % loading	43
Table 3.11 Comparison between AI method, PSO method	
and(Minimum voltage& harmony)	46
CHAPTER 4: Effect of Partial Outage of DG on System	
Performance	
Table 4.1 IEEE load flow Results for 100% loading with DGs	
rating found by HSA (unity PF)	50
Table 4.2: Results of system at 100% loading (unity PF)	50
Table 4.3 IEEE load flow results for 150% loading with DGs	
rating found by HSA (unity PF)	53
Table 4.4: Results of system at 150% loading (unity PF)	53
Table 4.5 IEEE load flow results for 200 % loading with DGs	

rating found by HSA (unity PF)	56
Table 4.6: Results of system at 200% loading (unity PF)	56
Table 4.7 IEEE load flow results for 250 % loading with DGs	
rating found by HSA (unity PF)	58
Table.4.8 Results of system at 250% loading (unity PF)	59
Table.4.9 Results of system at 100% loading (unity PF)	61
Table.4.10 Results of system at 150% loading (unity PF)	62
Table 4.11 Results of system at 200% loading (unity PF)	63
Table 4.12 Results of system at 250% loading (unity PF)	64
Table 4.13 IEEE33 bus load flow for 100% loading with DGs	
rating founding by HSA (0.8 PF)	67
Table 4.14 Results of system at 100% loading with DG (0.8 PF)	68
Table 4.15 IEEE33 bus load flow for 150% loading with DGs	
rating founding by HSA (0.8 PF)	69
Table 4.16 Results of system at 150% loading with DG (0.8 PF)	70
Table 4.17 IEEE33 bus load flow for 200% loading with DGs	
rating founding by HSA (0.8 PF)	72
Table 4.18 Results of system at 200% loading with DG (0.8 PF)	73
Table 4.19 IEEE33 bus load flow for 250% loading with DGs	
rating founding by HSA (0.8 PF)	74
Table 4.20 Results of system at 250% loading with DG (0.8 PF)	75
Table 4.21 Results of system at 100% loading with DG (0.8 PF)	77
Table 4.22 Results of system at 150% loading with DG (0.8 PF)	78
Table 4.23 Results of system at 200% loading with DG (0.8 PF)	79
Table 4.24 Results of system at 250% loading with DG (0.8 PF)	80

ABBREVIATIONS

AI Artificial Intelligence
DG Distributed generation
GA Genetic Algorithm
HAM Harmony Memory

HMCR Harmony Memory Consideration Rate

HMS Harmony Memory Size

HSA Harmony Search Algorithm

IA... Improved Analytical...

kVA Kilo Volt Ampere

Kilo Volt Ampere reactive (unit of reactive

power)

kW Kilo Watt (units of active power)

LSF Loss Sensitivity Factor

MaxMaximumMinMinimum

kVAr

PAR pitch adjusting rate

PSO Particle Swarm Optimization
CSC Controlled switched capacitor

SQP Sequential quadratic programming

ABSTRACT

In the last decades, the growing demand on electricity lead researchers to develop new methods for generating enough power to meet it partly by generating electricity distribution system and to improve power quality in client's side. Distributed generation (DG) is one of those methods. DG is widely used in modern networks and lead to changes in performance of distribution systems. The advantages that can be added to distribution system through using the DG's are mainly improvement of voltage profile and power quality. Thus, DG is preferable to be installed in distribution system near clients to enhance the system performance while reducing power losses and improve voltage in this grid. Recently, DG became highly important and its penetration increased in most of the distribution systems. This thesis studies the effects of distributed generation outage from the system on its performance and behavior. The model of DG's in this study assume two cases to the power that provided into network, where in the first case considered DG units inject just active power to the grid (unity power factor). In the second case the used DG injects both active and reactive power to the system. Where many types of DG as (inverted based connected with photovoltaic, full cell or micro wind& combined heat and power) can be used. The sizing is done by using harmony search algorithm (HSA) while the locations are selected by ranking of the network buses. This work was done on IEEE 33 bus system with 100% dynamic loads. The dynamic loads are selected after comparison between many types of loads (static loads, both static and dynamic loads) where it is considered to be the worst type of load. After that, outage of DG units is fixed by injecting reactive power source (capacitor with-controlled switch) to compensate the outage of DGs from the distribution system and to reduce the effect appeared on the network due to this outage. The sizing of capacitors is optimized by using harmony search algorithm (HSA) in same place of the DG units.

Keywords: inverter based DG, dynamic load, outage and shunt capacitors , active power , reactive power, static load.

Chapter 1: Introduction

1.1 Introduction

Electric energy became one of the most important basics of modern life and the demand on this energy increases consciously. This situation led to some challenges as to increase the generation to meet the growing demand. But the big challenges are how to provide this increasing of demand by the lowest cost to introduce service to costumer by lower price to be acceptable. The traditional method that was followed to produce the electricity and transmit it to the customers will be described below.

1.2 Conventional Method to Generate and Transmit Power

The conventional method to produce and deliver electrical power from conventional power stations to clients is passing through several stages. Electricity is usually produced in large power plants located far away from customers to decrease the cost of generation and to take the requirement of environmental issues and noise into consideration. After that this power is transmitted by transmission lines or underground cables after setting up the voltage to reduce the power losses. This stage is expensive due to the cost of installation of towers or Excavation works. Then stepping down the voltage of the distribution system is the final stage to provide the customers by electricity. The demand of this energy became continuously, which pushes the generation side to produce more power in order to meet the demand requirements that

mean not just additional generators but also lead to upgrade the transmission lines and distribution system to be able to take more power from centralized plant to customers that requires and lead to pay more money, Fig (1.1) shows traditional power flow from centralized station to customer.

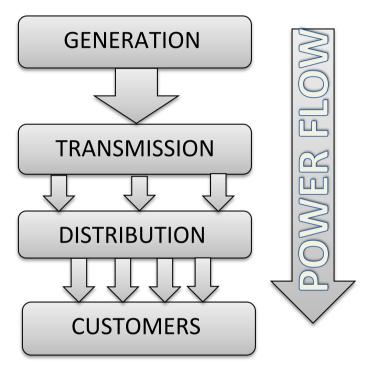


Fig. 1.1 Traditional power flow in conventional power system

The impact of the fossil fuel centralized plant on the greenhouse phenomena plays an important role to push researchers to enhance the methods to generate electricity from renewable source as wind turbines, photovoltaic and other methods. The activity and reliability of power generated from fossil fuel is more than the power generated from renewable resources. That led to improving those methods to reduce the difference between power generated from fossil fuel and that from renewable resources. Also, the storage element may be needed in some