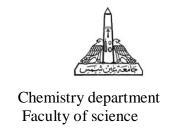


Thesis Entitled


Corrosion behavior of galvanized steel in aqueous solutions

Presented
By
Sayed Yehia Sayed

A Thesis Submitted
To
Faculty of Science
In Partial Fulfillment of the Requirements for
The Degree of Master of Science
(Chemistry)

Chemistry Department Faculty of Science Ain Shams University

(2016)

APPROVAL SHEET FOR SUBMISSION

Title of M.Sc. Thesis

Corrosion behavior of galvanized steel in aqueous solutions

By Sayed Yehia Sayed

B.Sc.in major chemistry, Faculty of science Ain shams University 2005

The thesis has been approved for submission	n by the supervisors:
Prof. Dr. \ Saad M. Abd-El-wahab	•••••
Professor of physical Chemistry,	
Faculty of Science-Ain Shams University	
Prof. Dr. \ Hamdy H. Hassan	•••••
Professor of physical Chemistry,	
Faculty of Science-Ain Shams University	
Prof. Dr. \ Yosry F. Barakat	•••••
Professor of chemical engineering	
Tabbin Institute for Metallurgical Studies	

Prof. Dr. \ Ibrahim H . A. Badr

Chairman of Chemistry Department

Acknowledgement

First of all, my greatest thanks to ALLAH for giving me the power to complete this work.

My deep gratitude to Prof. Dr/ Yosry Barakat Tabbin Institute for Metallurgical Studies (TIMS) for his discerning supervision, encouragement, fatherly helps and fruitful guidance.

Also my thank to Prof. Dr/Hamdy H. Hassan of Chemistry Department-Ain Shams University for his help and Keen interest, supervision, encouragement and hard efforts.

I would also like to thank Prof.Dr/Saad M. Abd-El-wahab of Chemistry Department-Ain Shams University for his kind permission given to me to complete this research.

Last but not at least I am grateful to my family, without their encouragement, and patience, this work could not be achieved.

Sayed Yehia

Abstract

The most commonly used zinc coating deposition technology on carbon steel is by hot-dip galvanizing. Hot dip galvanized (HDG) coatings are widely used in industry for corrosion protection of steels. Silicate passivation coating on galvanized steel is considered as an alternative to Chromate passivation treatment to improve the corrosion resistance of hot-dip galvanized steel. In this study, silicate conversion coatings were prepared by immersing hot dip galvanized steel sheets immediately upon removing from the molten zinc in potassium silicate solution bath with chemical composition: 25% SiO₂, 12% K₂O and 63% water, at metal immersion temperatures in excess of about 150 °C or higher, the immersion time was constant about 30s. The surface modified by silicate conversion coating was characterized by X-rays diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-rayspectrometer (EDX), the corrosion behavior of the treated hot-dip galvanized steel was evaluated by means of electrochemical impedance spectroscopy measurements and Potentiodynamic polarization and Cyclic voltammogram (CV), The results showed that: the corrosion resistance increased with increasing silicate ions concentration up to 6%, also corrosion resistance increased as temperature of galvanized steel sheet increased up to 250°C. This can be related to the addition of the silicon ions in the zinc coating to form a zinc-silicate complex which is responsible for the highly corrosion resistant.

Keywords: corrosion; hot-dip galvanized steel; conversion coating; silicate; impedance; cyclic voltammogram; Tafel plots.

Aim of work

One of the main objectives of this work is to evaluate the viability of a simple and industrially easy-to-implement substitute to the widely employed chromate coatings to improve corrosion resistance of HDGS.

In the present study, a new method to form a dense silica layer onto galvanized steel was proposed, based on immersing of HDGS sheets immediately upon removing from the molten zinc in potassium silicate solution bath.

One of the main aims of this study is to match some important industrial requirements concerning the deposition procedure, like low cost, small number of treatment steps and friendly to environment. Therefore, in the process presented in this paper, the silicate bath concentration and temperature of HDGS sheets upon removing from the molten zinc bath were optimized.

CONTENTS

Acknowledgement	I
Abstract	.II
Aim of work	III
List of tables	VI
List of figuresV	/II
Chapter 1 Introduction and Literature Review	. 1
1.1. Introduction	. 1
1.2. Literature Review	. 6
1.2.1. Physical natures of zinc	. 6
1.2.2. Hot-dip galvanizing process	. 6
1.2.3. Metallurgical bond between zinc and steel	. 7
1.2.4. Zinc alloy coatings	11
1.2.5. Electroplating	11
1.2.6. Corrosion of zinc in atmosphere	11
1.2.7. Corrosion of zinc in aqueous environment	15
1.2.8. Conversion Coatings: (Zinc-passivation)	22
1.2.9. Alternatives to chromates	31
Chapter 2 Experimental	42
2.1. Sample preparation	42
2.2. Hot-dip galvanizing process	42
2.2.1. Surface Preparation	42

2.2.2. Hot-dip galvanization process	. 43
2.3. Electrochemical tests and characterizations	. 44
2.3.1. Electrochemical tests.	. 44
2.3.2. Surface morphology and characterization.	. 45
Chapter 3 Results and discussion.	. 48
3.1. Electrochemical methods	. 48
3.1.1. Effect of Silicate passivation bath concentration	. 48
3.1.2. Effect of temperature of HDGS sheets at in silicate bath	56
3.1.3. Pitting corrosion of treated sample: .	61
3.1.4. Cyclic voltammogram for treated samples:.	65
3.2. Surface morphology and characterization.	74
3.2.1. SEM- Surface morphology.	74
3.2.2. XRD .	82
3.2.3. Cross-sectional SEM-EDX.	83
3.2.4. Surface morphology after corrosion .	85
References.	88
Summery and conclusion.	107

List of tables

Table 1. Chemical composition of steel	14
Table 2. Chemical composition of silicate passivation bath:	14
Table 3. Electrochemical parameters obtained from Figure 9	50
Table 4. Fitted parameters for the HDGS samples with the silicate	
coatings using the equivalent circuit in Figure 115	55
Table 5. Fitted parameters using the equivalent circuit in Figure 11 for	
the 6% silicate treatment at three different temperatures 250 °C, 200 °C	
and 150 °C, immersed in 3.5 wt.% NaCl solution	58
Table 6. Electrochemical parameters obtained from Figure 13 6	50
Table 7. Electrochemical parameters obtained from Figure 19	73
Table 8: EDX analysis of the potassium silicate conversion coating of	
HDGS obtained from potassium silicate with different concentration at	
250 °C:	75
Table 9 EDX analysis of the potassium silicate conversion coating of	
HDGS obtained from 6% potassium silicate concentration with different	t
treatment temperatures	30
Table 10: EDX cross-sectional analysis of the potassium silicate	
conversion coating obtained from 6% potassium silicate concentration at	t
250 °C treatment temperature of HDGS sample:	33

List of figures

Figure 1.Effect of silicon of steel on zinc coating weight9
Figure 2 zinc-iron alloy layers on the steel surface10
Figure 3. Formation cycle of zinc patina
Figure 4. Corrosion product formation sequence in different
environments under sheltered conditions. The black dots indicate at what
time a compound was earliest detected
Figure 5. Description of galvanic corrosion
Figure 6. Electrochemical corrosion cell for zinc
Figure 7. Potential-pH equilibrium diagram for zinc-water system at
25°C19
Figure 8. Effect of pH of contact material on corrosion of zinc20
Figure 9. Effect of temperature on zinc corrosion in distilled water .21
Figure 10. Cathodic protection of zinc coating
Figure 11. schematic illustration of (a) the formation of Cr(OH) ₃
backbones and (b) the possible structure of Cr(III)/Cr(VI) mixed oxide
present in the chromate coating27
Figure 12. Tafel plots of electrodeposited zinc and green chromated
zinc deposit (in 4% Sodium chloride solution). The potentials were
measured against a standard calomel electrode (SCE). Source30
Figure 13. Schematic diagram represent the self healing action of
silicate conversion coating on scratching area
Figure 14. Polarization curves of the silicate coatings of HDGS in
3.5wt. % NaCl solution. Coatings were obtained from different
concentrations of potassium silicate solution49
Figure 15. The relation between silicate concentration and corrosion
rate of galvanized steel