

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.995

ADSORPTION OF SURFACTANTS FROM AQUEOUS SYSTEMS ONTO SOME SOLID SURFACES

THESIS

Submitted in fulfillment of the requirements for the degree of

Philosophy of Science (Ph. D.)

(Chemistry)

By

REDA RAMZY GAYED

B.Sc. in Chemistry, Cairo University 1984

M.Sc. in Chemistry, Ain Shams University 1990

Department of Chemistry

Faculty of Science

Suez Canal University

(Ismalia)

1996

ADSORPTION OF SURFACTANTS FROM AQUEOUS SYSTEMS ONTO SOME SOLID SURFACES

Supervisors:

1- Prof. Dr. Youssef Barakat Youssef

Egyptian Petroleum Research Institute

2- Dr. El-Sayed I. Al-Wakeel

Faculty of Science, Suez Canal University

3- Dr. Attia Ibrahim M. Mead

Faculty of Education, Suez Canal University

Approved

E. I. AP-100 R-00

Attia I. M. Mend.

م دروکی الکارم لے فرانسلی اللان

ADSORPTION OF SURFACTANTS FROM AQUEOUS SYSTEMS ONTO SOME SOLID SURFACES

Examiners

Approved ,

1) Prof. Dr. Ramzi Mikhail Habib
Prof. of Petroleum,
Egyptian Petroleum Research Institute, Nasr City, Egypt

2) Prof. Dr. Abd El-Fattah Mohamed Youssef Professor of Physical Chemistry,

Faculty of Science, Mansoura University

3) Prof. Dr. Youssef Barakat Youssef

Professor of Physical Chemistry,

Egyptian Petroleum Research Institute, Nasr City, Egypt

ACKNOWLEDGMENT

The author is highly indebted to the following individuals and organizations for their contribution to this work:

Professor Youssef Barakat Youssef, Head of Specialty Processes Laboratory, Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), for supervising this work and for his teachings which went far beyond research matters.

Dr. El-Sayed I. El-Wakeel, Chemistry Department, Faculty of Science, Suez Canal University, Ismalia, Egypt, for many interesting discussions and valuable support at critical points in this study.

Dr. Attia I. M. Mead, Chemistry Department, Faculty of Education, Suez Canal University, Al-Arich, Egypt, for his fruitful guidance and helpful suggestions on surfactant and related subjects.

Chemistry Department, Faculty of Science, Suez Canal University, for offering every possible help on UV measurements. Dr. Tahany S. Gendy, EPRI for all the computational work and the least-squares regression analysis.

TABLE OF CONTENTS

ACKNOWLE	DGi	MEN	T	Page
SUMMARY				i
LITERATURI	E SU	JR V	EY	
			INTRODUCTION	vii
	I.	1	Background	vii
	I.	2	Scope of this Work	iv
CHAPTER II.			ENHANCED OIL RECOVERY	1
	II.	1	Chemical Floods	1
	II.	2	Gas Floods	2
	II.	3	Steam Floods	3
	II.	4	Combustion or Firefloods	3
	II.	5	Electric Heating	3
CHAPTER III.			ADSORPTION/RETENTION OF	
			SURFACTANTS ONTO MINERAL	
			SURFACE AND ION-EXCHANGE	4
CHAPTER IV.			PHYSICO-CHEMICAL ENVIRONMENT	
			OF PETROLEUM RESERVOIRS IN	
			RELATION TO OIL RECOVERY	
			SYSTEMS	10

			Page
IV.	1	The Physico-Chemical Characteristics of	
		Crude Oil	11
IV.	2	Interstitial Water	11
IV.	3	Minerology of Reservoir Rock	12
IV.	4	Geology/Lithology	13
IV.	5	The Temperature of Reservoir	14
CHAPTER V.		STRUCTURE AND ELECTRICAL	
		PROPERTIES OF KAOLINITE	15
V.	1	Structure of Kaolinite	15
V.	2	Origin of Electrical Surface Charge	17
V.	3	The Electrical Double Layer	22
V.	4	Effect of Electrolyte	23
V.	5	Role of Water	23
CHAPTER VI.		EXPERIMENTAL	
VI.	1	Monoisomeric Alkylbenzene Sulphonates	25
VI.	2	Critical Micelle Concentration (CMC)	25
VI.	3	Krafft and Clear Points	30
VI.	4	Ionic Strength	30
VI.	5	Substrate Treatment	32
VI.	6	Equilibrium Adsorption Studies	32
VI.	7	Ultraviolet Spectrophotometric Analysis	37
VI.	8	Nonylphenol Ethoxylates	41
VI.	9	Adsorption of Nonionics on Kaolinite	41

•

				Page
	VI.	10	UV Analysis and Adsorption Isotherms of	
			Nonionics	43
CHAPTER	VII.		RESULTS AND DISCUSSION	46
	VII.	1	Monomer-Micelle Equilibrium in Single	
			Component System	46
			VII.1.1 Critical Micelle Concentration	
			(CMC)	46
			VII.1.2 Effect of Sulphonate's Chain	
			Length on CMC	47
			VII.1.3 Effect of pH on CMC	47
			VII.1.4 Effect of Added Glycols on CMC	50
	VII.	2	Monomer-Micelle Equlibrium in Binary	
			Component Systems	58
			VII.2.1 CMC of Binary Sulphonate	
			Mixtures	58
	VII.	3	Krafft Points of Monoisomeric Sulphonates	66
			VII.3.1 Single Component Systems	66
			VII.3.2 Binary Sulphonate Mixtures	66
			VII.3.3 Effect of Added Glycols	69
	VII.	4	Adsorption of Isomerically Pure	
			Sulphonates on Kaolinite	73

		Page
	VII.4.1 Adsorption Isotherm	73
	VII.4.2 Effect of Surfactant Chain Length	77
	VII.4.3 Effect of Systems's pH	79
	VII.4.4 Effect of Added Glycols on Ce and	
	$\Gamma_{\mathbf{a}}$	83
	VII.4.5 Effect of Added Glycols on C_e and	
	Γ_a Values of Binary Sulphonate	
	Mixtures	94
VII. 5	Adsorption of Nonionic Surfactants on	
	Kaolinite	98
	VII.5.1 Effect of Polyoxyethylene Chain	102
	VII.5.2 Effect of pH	104
	VII.5.3 Effect of Electrolyte	107
	VII.5.4 Effect of Temperature	108
	VII.5.5 Effect of Added Glycols on CMC	
	Values of Nonylephenol Ethoxlates	111
	VII.5.6 Effect of Added Glycols on the	
	Adsoprtion Isotherms of	
	Nonylphenol Ethoxylates on	
	Kaolinite	118
	VII.5.7 Relation Between Plateau	
	Adsorption and CMC of	
	Nonylphenol Ethoxylates in the	
	Presence of Added Glycols	123

CONCLUSIONS 130

		Page
APPENDICES		135
А	Appendix A: Preparation of Monoisomeric	
	Linear Alkylbenzene Sodium	
	Sulphonates	135
	I- Preparation of Monoisomeric	
	Linear Alkylbenzene	135
	II- Sulphonation of The Prepared	
	Linear Alkylbenzene	139
	III- Neutralization and Purification	143
A	Appendix B : Spectrophotometric Analysis	145
	I- Ultraviolet Spectrophotometric	
	Analysis of Alkylbenzene	
	Sulphonates	145
	II- Ultraviolet Spectrophotometric	
	Analysis of Alkylphenol	
	Ethoxylates	153
	III- Equilibrium Concentration (C_e)	
	and Apparent Adsorption (Γ_a)	162
REFERENCES		191

ARABIC SUMMARY

