Synthesis and Characterization of Some Resins to Separate Some Radioactive Elements from Egyptian Monazite

A thesis Submitted

By

Ahmed Ragaa Abd El-Hay Elsalamouny

For

The Degree of Doctor of Philosophy in Chemistry

To

Chemistry Department
Faculty of Science
Ain Shams University

Synthesis and Characterization of Some Resins to Separate Some Radioactive Elements from Egyptian Monazite

A thesis Submitted

By

Ahmed Ragaa Abd El-Hay Elsalamouny

For

The Degree of Doctor of Philosophy in Chemistry

To

Chemistry Department Faculty of Science Ain Shams University

Supervised by

Prof. Saad Abd El-Wahab Mohamed

Prof. of Physical Chemistry Faculty of Science, Ain Shams University

Prof. Osman Abd El-Naby Desouky

Prof. of Inorganic Chemistry Nuclear Materials Authority

CONTENTS

		Page
	ACKNOWLEDGMENT	
	ABSTRACT	
	LIST OF TABLES	i
	LIST OF FIGURES	iii
	AIM OF THE WORK	viii
1.	INTRODUCTION	1
.1.	Separation techniques	1
.1.1.	Precipitation and coprecipitation	1
.1.2.	Electrodeposition	2
.1.3.	Distillation	4
.1.4.	Liquid membrane	5
.1.5.	Solvent extraction	6
.1.6.	Solid–phase extraction	8
.2.	Chemistry of the investigated elements	12
.2.1.	Uranium	12
.2.2.	Thorium	15
.2.3.	Neodymium	16
.3.	Monazite ore	18
.3.1.	Acid cracking	19
.3.2.	Alkaline cracking	20
1.4.	Literature survey of the recent studies on the solid phase extraction of the investigated elements	۲۱
2.	EXPERIMENTAL	٤٥
2.1.	Chemicals and reagents	٤٥
2.2.	Instrumentation	20
2.3.	Spectrophotometric determination of radioactive elements	47

		Page
2.4.	Preparation of the sorbents	٥١
2.4.1.	Fumarated polystyrene microspheres	٥١
2.4.2.	Solidified Mannich type resin	٥١
2.4.3.	N-methylene phosphonic chitosan	٥٢
2.5.	Procedures	07
3.	RESULTS AND DISCUSSION	0 2
3.1.	Fumarated polystyrene microspheres	0 2
3.1.1.	Characterization of sorbent	0 \$
3.1.2.	Adsorption study	٥٤
3.1.2.1.	Effect of pH	0 \$
3.1.2.2.	Kinetic study	٥٩
3.1.2.3.	Sorption isotherm and thermodynamic study	٦٢
3.1.2.4.	Sorbent selectivity	٧٣
3.1.2.5.	Regeneration of sorbent	٧٣
3.2.	Solidified Mannich Type resin	٧٤
3.2.1.	Sorbent characterization	٧٤
3.2.2.	Adsorption study	٧٨
3.2.2.1.	Effect of pH	٧٨
3.2.2.2.	Kinetic studies	٧٨
3.2.2.3.	Isotherm studies	۸Y
3.2.2.4.	Thermodynamic studies	97
3.2.2.5.	Selectivity of sorbent	90
3.2.2.6.	Regeneration of sorbent	90
3.3.	N-methylene phosphonic chitosan	97
3.3.1.	Preparation of the grafted biosorbent	97
3.3.2.	Characterization of sorbent	97
3.3.3.	Adsorption study	٩٨

3.3.3.1.	Effect of pH	101	
3.3.3.2.	Kinetic study	103	
3.3.3.3.	Sorption isotherm and thermodynamic study	10ላ	
3.3.3.4.	Sorbent selectivity	11٤	
3.4.	Application	117	
	SUMMARY	171	
	REFERENCES	17 £	
	ARABIC SUMMARY		

ACKNOWLEDGMENT

First and the most I would like to thank Allah, whom without, this work would not have been done.

I wish to express my deep thanks and full sincere gratitude to **Prof. Saad Abd El-Wahab Mohamed**, Professor of physical chemistry, faculty of science, Ain Shams University, for his help, supervision, encouragement and valuable instructive guidance.

I would like to offer my deepest thanks to my **Prof. Osman Abd El-Naby Desouky**, Professor of inorganic chemistry, nuclear materials Authority, for suggesting the problem, his supervision, interesting discussion, for the interpretation of the data and his continuous help during all the stages of the development of the work. His insight and patience on both the professional and personal levels helped in the accomplishment of the present study and his kind support.

Finally, Thanks for all the staff members and colleagues of ore treatment department, nuclear materials Authority, for their cooperation.

ABSTRACT

Some synthetic sorbents were successfully prepared using different methods for separation and removal of some elements namely; U^{6+} , Th^{4+} and Nd^{3+} from aqueous solutions.

The chelating organic material such as fumaric acid can be copolymerized with an inert polymeric support like polystyrene to form fumarated polystyrene microspheres as a novel chelating polymeric resin. Also, another chelating polymeric material was prepared using the chelating properties of diethanolamine (DEA) to make a chemical modification for novolac resin. Finally, a direct reaction was employed for fully substitution of hydrogen atoms of amino groups on chitosan by methylene phosphonic groups under drastic conditions. Abundant of methylene groups increases the hydrophobic property of modified chitosan and leads to its insolubility under a wide pH range. This resin was applied as a novel sorbent for metal ions removal using batch processes.

The performance of these synthetic sorbents in metal ions removal was assessed by studying the effect of different conditions on the distribution of these metal ions between solid and liquid phases. The effect of contact time on the removal process was studied and kinetic models were deduced to describe this effect. Finally, the stabilization of contaminants on the synthetic resin under different initial contaminant concentrations was studied by analyzing equilibrium isotherms data. These studies were dedicated to separate metal ions under study from Egyptian monazite mineral using one of these synthetic sorbents.

LIST OF TABLES

		Page
Table (2-1)	Main chemicals and reagents used.	46
Table (3-1)	Kinetics parameters for U(VI), Th(IV) and Nd(III) ions sorption.	6 ^V
Table (3-2)	Isotherm constants for U(VI), Th(IV) and Nd(III) ions sorption.	71
Table (3-3)	Comparison of sorption capacities of different sorbents for U(VI), Th(IV) and Nd(III) ions.	7٢
Table (3-4)	Kinetic parameters for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	8٤
Table (3-5)	Isotherm parameters for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	91
Table (3-6)	Thermodynamic parameters for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	93
Table (3-7)	Elemental analysis of chitosan and its derivative.	9۸
Table (3-8)	Kinetics parameters for U(VI) and Nd(III) ions sorption.	10٨
Table (3-9)	Isotherm constants for U(VI) and Nd(III) ions sorption.	11٣

		Page
Table (3-10)	Comparison of sorption capacities of different sorbents for U(VI) and Nd(III) ions.	110
Table (3-11)	Chemical analysis of monazite sample.	114
Table (3-12)	Chemical analysis of (Th-U) cake.	11^
Table (3-13)	The adsorbed amounts of U(VI) and Th(IV) according to pH value.	119

LIST OF FIGUERS

		Page
Fig. (3-1)	FTIR spectra of (a) polystyrene and (b) fumarated polystyrene.	55
Fig. (*-2)	The proposed structure of fumarated polystyrene resin.	56
Fig. (٣-3)	SEM photo of fumarated polystyrene microspheres.	57
Fig. (3-4)	Effect of pH on U(VI), Th(IV) and Nd(III) ions uptake using fumarated polystyrene resin where $V/W = 0.2 \text{ L g}^{-1}$ and $C_i = 55 \text{ mg U L}^{-1}$, 100 mg Th L ⁻¹ & 57 mg Nd L ⁻¹ at 20 °C.	58
Fig. (3-5)	Uptake kinetics of U(VI) at pH 4, Th(IV) at pH 3.5 and Nd(III) at pH 5 using fumarated polystyrene resin where $V/W = 0.2 \text{ L g}^{-1}$ and $C_i = 55 \text{ mg U L}^{-1}$, 100 mg Th L ⁻¹ & 57 mg Nd L ⁻¹ at 20 °C.	60
Fig. (3-6)	Pseudo-first order plot for the adsorption of U(VI), Th(IV) and Nd(III) ions onto fumarated polystyrene resin.	63
Fig. (3-7)	Pseudo-second order plot for the adsorption of U(VI), Th(IV) and Nd(III) ions onto fumarated polystyrene resin.	64
Fig. (3-8)	Elovich model plot for the adsorption of U(VI), Th(IV) and Nd(III) ions onto fumarated polystyrene resin.	65
Fig. (3-9)	Sorption isotherms of U(VI) at pH 4, Th(IV) at pH 3.5 and Nd(III) at pH 5 using fumarated polystyrene resin where $V/W = 0.2 \text{ L g}^{-1}$ at 20 °C.	66

		Page
Fig. (3-10)	Freundlich model plot for the adsorption of U(VI), Th(IV) and Nd(III) ions onto fumarated polystyrene resin.	68
Fig. (3-11)	Langmuir model plot for the adsorption of U(VI), Th(IV) and Nd(III) ions onto fumarated polystyrene resin.	69
Fig. (3-12)	(D-R) model plot for the adsorption of U(VI), Th(IV) and Nd(III) ions onto fumarated polystyrene resin.	70
Fig. (3-13)	FTIR spectra of (a) Nonolac resin and (b) Mannich type resin.	75
Fig. (3-14)	The proposed structure of Mannich type resin.	76
Fig. (3-15)	TGA and DTA curves for Mannich type resin.	77
Fig. (3-16)	Effect of pH on U(VI) and Th(IV) ions uptake using Mannich type resin where $V/W = 0.2 \text{ L g}^{-1}$, $C_i = 100 \text{ mg L}^{-1}$, contact time = 150 min and temp. = 30 °C.	79
Fig. (3-17)	Effect of contact time on U(VI) and Th(IV) ions uptake using Mannich type resin where $V/W = 0.2 \text{ L g}^{-1}$, $C_i = 100 \text{ mg L}^{-1}$, temp. = 30 °C.	80
Fig. (3-18)	Pseudo-first order plot for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	82
Fig. (3-19)	Pseudo-second order plot for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	83

		Page
Fig. (3-20)	Intra-particle diffusion model plot for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	85
Fig. (3-21)	Elovich model plot for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	86
Fig. (3-22)	Effect of initial U(VI) and Th(IV) ions concentration on their adsorption onto Mannich type resin.	88
Fig. (3-23)	Freundlich model plot for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	89
Fig. (3-24)	Langmuir model plot for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	90
Fig. (3-25)	(D–R) model plot for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	91
Fig. (3-26)	Van't Hoff plot for the adsorption of U(VI) and Th(IV) ions onto Mannich type resin.	94
Fig. (3-27)	SEM-EDX of (a) Chitosan and (b) Chitosan derivative.	۹7
Fig. (3-28)	FTIR spectra of (a) Chitosan and (b) Chitosan derivative.	99
Fig. (3-29)	The proposed structure of Chitosan derivative.	100

		Page
Fig. (3-30)	Effect of pH on U(VI) and Nd(III) ions uptake using Chitosan derivative where $V/W = 0.2 \text{ L g}^{-1}$ and $C_i = 55 \text{ mg U L}^{-1} \text{ \& } 57 \text{ mg Nd L}^{-1}$ at 20° C.	1.2
Fig. (3-31)	Uptake kinetics of U(VI) at pH 4 and Nd(III) at pH 5 using Chitosan derivative where $V/W = 0.2 \text{ L g}^{-1}$ and $C_i = 55 \text{ mg}$ U L ⁻¹ & 57 mg Nd L ⁻¹ at 20° C.	١٠4
Fig. (3-32)	Pseudo-first order plot for the adsorption of U(VI) and Nd(III) ions onto Chitosan derivative.	1.5
Fig. (3-33)	Pseudo-second order plot for the adsorption of U(VI) and Nd(III) ions onto Chitosan derivative.	1.6
Fig. (3-34)	Elovich model plot for the adsorption of U(VI) and Nd(III) ions onto Chitosan derivative.	١٠7
Fig. (3-35)	Sorption isotherms of U(VI) at pH 4 and Nd(III) at pH 5 using Chitosan derivative where $V/W = 0.2 \text{ Lg}^{-1}$ at 20° C.	1.9
Fig. (3-36)	Freundlich model plot for the adsorption of U(VI) and Nd(III) ions onto Chitosan derivative.	110
Fig. (3-37)	Langmuir model plot for the adsorption of U(VI) and Nd(III) ions onto Chitosan derivative.	111
Fig. (3-38)	(D–R) model plot for the adsorption of U(VI) and Nd(III) ions onto Chitosan derivative.	112

		Page
Fig. (3-39)	SEM photos of loaded fumarated polystyrene resin contacted with solutions of a real sample at different pH values; (a) pH 2, (b) pH 3and (c) pH 4.	120

AIM OF THE WORK

This work is directed to prepare suitable synthetic sorbents for separation and removal of some elements namely; U⁶⁺, Th⁴⁺ and Nd³⁺ from aqueous solutions.

The following procedures are required for accomplish this work: Preparation and characterization of the synthetic resins that are used in separation of the chosen elements; Study efficiency of the synthetic resins that are used in separation of the chosen elements from pure samples and in presence of related interferences; Evaluation of some thermodynamic parameters like ΔG , ΔH and ΔS and kinetics of experimental results; Study efficiency of the synthetic resins that are used in separation of the chosen elements from real samples; Compare the obtained results statistically with the reference results that were published.