REUSE OF GRAYWATER FOR LANDSCAPE CULTURE

By

MAHMOUD KHALED MOHAMED

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2011.

A Thesis submitted in partial fulfillment
Of
The requirements for the degree of

MASTER OF SCIENCE in Agricultural Sciences (Irrigation and drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

REUSE OF GRAY WATER FOR LANDSCAPE CULTURE

By

MAHMOUD KHALED MOHAMED

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2011.

This Thesis for M.Sc. degree has been approved by:

Date of Examination: / 2016

Dr.	Hussein Ehsan El-Atfy Prof. Emeritus of Water Resources Management, Arabic Water Council (AWC).
Dr.	Mahmoud Mohamed Hegazy
Dr.	Zeinab Hussein Mahmoud Behairy
Dr.	Mohamed Nabil El AwadyProf Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

REUSE OF GRAY WATER FOR LANDSCAPE CULTURE

By

MAHMOUD KHALED MOHAMED

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2011.

Under the supervision of:

Dr. Mohamed Nabil El Awady

Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Zeinab Hussein Mahmoud Behairy

Prof. Emeritus of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Khaled Faran EL-Bagory

Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

ABSTRACT

MahmoudKhaled Hassan: Reuse of gray water for landscape culture. Unpublished M.Sc. thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2017.

Wastewater whether municipal or industrial needs to be treated before they could be feasibly used. Treatment means that wastewater undergoes a group of physical, chemical and biological processes. This processing essential for public both health environmental protection. In this work a lab scale system of Rotating Biological Contactor (RBC) was used for treating gray water collecting from a household facility which diverts water from the bath, shower and hand basin of a residencelocated at El- Adl St. EL-Marg city (ش العدل) west of Cairo to be used in irrigating some ornamental plants ضاحية المرج)، i.e *Epipremnum aureum* and *SyngoniumPodophyllum* used in landscape culture. The RBC unit was modified with a provision to vary the speed (rpm) of rotating discs, Hydraulic Retention Time (HRT) and the disc surface area. The RBC unit had four different rotating speeds 2, 3, 4 and 5 rpm, six different hydraulic retention times 15, 30, 45, 60, 75, 90 min, and three different disc surface area 48×10^2 , 64×10^2 and 80×10^2 cm². The results indicated that the rotational speed of 4 rpm yielded better percent removal of COD at 72.5%. Hydraulic retention time 90 min yielded better percent removal of COD at 74.28%. Disc surface areas of 80×10^2 cm² yielded better percent removal of COD at 76.47%. In addition Escherchia coli (E.coli) decreased from 4.2×10^3 CFU/100ml to be 3.8×10^2 CFU/100ml with removal efficiency 90.9%. Results also indicated a sharp decrease of the soil heavy metals (lead, copper and zinc) for treated gray water treatment. From the obtained results the amount of removed COD per unit volume of gray water (R)was affected with HRT (min) and Reynolds number (Re) where, Re is function with speed (V), amount of COD in raw gray water (C), flow rate (Q) and discs surface diameter (d)in a functional relationship.

$$\frac{R}{c} = f(Re, \frac{HRT \cdot Q}{d^3}).$$

After achieving the optimum conditions, a greenhouse experiment was set up to examine the effects of treated gray water irrigation in comparison with raw gray water and fresh water on the vegetative growth of potted Epipremnum aureum and Syngonium podophyllumplants. These plants were cultivated in a medium consists of peat moss and sand (1:2). Results showed no significance was detected on all the growth measurements concerning the effect of treated gray water in comparison with the other two irrigation sources. However, the plants irrigated with raw gray waterdemonstrated best growth and good appearance (color and turgidity). It was noticeable also that the peat moss existed in the cultivated medium played a very good role for pollutants removal from the raw gray water.It was concluded that the Rotating Biological contactor (RBC) has a high performance in the removal of dissolved pollutants with less energy and it is more suitable for heavily polluted wastewater. Thus, it was recommended that raw gray wastewater must be analyzed before applying any treatment just to pick out the best and effective methodology suitable for the irrigation purpose.

Key words: Gray water – Rotating Biological Contactor (RBC) – COD – BOD – E. coli - *Epipremnum aureum* and *Syngonium podophyllum*plants

ACKNOWLEDGEMENT

First and foremost, and before any one I thank **Allah**, on all his graces, and for his supported my work to complete successfully.

I wish to express my deep appreciation and gratitude to **Prof. Dr.Mohamed Nabil El Awady**, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University for his kind supervision through this work. I am grateful for his valuable discussion, suggestions and helpful criticism, which helped me to implement this work.

I wish to express my sincere gratitude and appreciation to **Prof. Dr.Zeinab Hussein Mahmoud**Department of Horticulture, Faculty of Agriculture, Ain Shams University for her kind supervision, continuous encouragement and valuable advises through this work.

I wish to express my sincere gratitude and appreciation to **Dr. Khaled Faran El Bagory**, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University for his kind supervision and helping me to overcome all barriers to finish this work.

I am deeply indebted to**Prof. Dr. RawiaFathi Mahmoud**Department of Agricultural Microbiology, Faculty of
Agriculture, Ain Shams Universityfor her great effort and advice
throughout this work.

I extend my thanks and Love to my honorable parents, my brothers, my sisters, my wife and my children. They endured much for me.... Really thanks my family.

Finally, I would also like to place on record, my sense of gratitude to one and all who, directly or indirectly, lent their helping hand in this research.

LIST OF ABBREVIATIONS

APHA American Public Health Association

ASB Anaerobic Sludge Blanket

BOD Biological Oxygen Demand, mg/L

BMC Billion Cubic Meter

C amount of COD, g/m3

COD Chemical Oxygen Demand, mg/L

CFU Colony Forming Unit

Cu Copper

CW Constructed Wetland

D Disc diameter, m

DC Direct Current

DOC Dissolved Organic Carbon

EC Electrical Conductivity

E. coli Escherichia Coli

GW Gray Water

HLR Hydraulic Load Ratio

HRT Hydraulic Retention Time

LSD Least Significant Difference

MBR Membrane Bioreactor

MWRI Ministry of Water Resources and Irrigation

NTU Nemotroulas Turbidity Unit

Pd Lead

Q Flow rate, m3/sec.

R Removal efficiency of COD

RBC Rotating Biological Contactor

Re Reynold's number

RO Reverse Osmosis

RVFCW Recirculating Vertical Flow Constructed Wetland

RPM Rotation per Minute

SAR Sodium Adsorption Ratio

SCOD Soluble Chemical Oxygen Demand

SMBR Submerged Membrane Bioreactor

TDS Total Dissolved Solid, mg/lit

TKN Total Kjeldahl Nitrogen, mg/lit.

TSS Total Suspended Solid, mg/lit

TP Total Phosphorus

uSc/m Microsiemens per meter

V Linear velocity (m/sec.

Zn Zinc

ρ Density of gray water

μ Dynamic viscosity

CONTENTS

	Page
LIST OF TABLES	I
LIST OF FIGUERS	V
LIST OF ABBREVIATIONS	VIII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Water resources of Egypt	4
2.2. Graywater percentage in Egypt	5
2.3. Water scarcity in Egypt	6
2.4. Gray water definition	6
2.5. Gray water origin	7
2.6. Why use Gray water	7
2.7. Gray water characteristics	8
2.8. Gray water benefits	9
2.9. Reuse of graywater for irrigation	9
2.10. Gray water treatment technologies	11
2.10.1. Physical treatments	11
2.10.2. Chemical treatments	12
2.10.3. Biological treatments	14
2.10.3.1.Treatment by using Constructed wetland (CW)	14
2.10.3.2.Treatment by using Rotating Biological Contactors (RBCs)	15
2.10.3.3.Factors affecting on RBC performance	18
2.10.3.3.1 Hydraulic retention time (HRT)	18
2.10.3.3.2 Speed	20
2.10.3.3.3 Rotating discs surface area	22
3. MATERIALS AND METHODS	23
3.1. System setting up	23

	Page
3.2. Steps followed in the experiment	23
3.3. Treatment steps	23
3.3.1. Raw graywater storage tank	24
3.3.2. Electrical motorpump	25
3.3.3. RBC basin	25
3.3.3.1. Rotating discs	26
3.3.3.2. Electrical drivemotor	27
3.3.4. Sedimentation stage	28
3.3.5. Sand filter treatment stage	29
3.4. Sampling and analytical methods	30
3.4.1. Sampling	30
3.4.2. Analytical method	30
3.4.3. Physico-chemical analysis	30
3.4.4. Biological analysis	30
3.5. Greenhouse experiment	31
4. RESULTS AND DISSCUTION	35
4.1. Raw and treated gray water quality for irrigation	35
4.1.1. PH	35
4.1.2. Total Suspended Solids (TSS)	36
4.1.3. Total Dissolved Solids (TDS)	36
4.1.4. Chemical Oxygen Demand (COD)	36
4.1.5. Biological Oxygen Demand (BOD5)	36
4.1.6. Chemical nutrients	36
4.1.7. Heavy metals (Lead, Copper, and Zinc)	37
4.1.8. Microbiological parameter (E.coli)	37

	Page
4.2. Factors affecting RBC performance	37
4.2.1. Effect of speed on COD removal	37
4.2.2. Effect of hydraulic retention time	40
4.2.3. Effect of surface area of rotating discs	41
4.2.4 Dimensionless groups	42
4.2.5. Effect of irrigation treatments on plant growth	43
4.2.5.1. Growth measurements for Epipremnumaureum	45
4.2.5.2. Growth measurements for Syngonium podophyllum	46
4.3. Effect of various irrigation treatments on soil heavy metals	47
5. SUMMARY AND CONCLUSION	48
6. REFRENCES	51
7. APPENDIX	56
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
No.		
1	General characterization of gray water	9
2	Characteristics of effluents and average pollutants removal	
	efficiencies of EC-SMBR process various SMBR process	14
3	Comparison of untreated and treated grey water at varies	
	hydraulic retention times	19
4	Raw and treated gray water analysis compared with FOA	
	guidelines	35
5	Different growth measurements for <i>Epipremnum aureum</i>	
	plants, under the various irrigation treatments	45
6	Different growth measurements for Syngonium	46
	podophyllum plants, under the various irrigation treatments	
7	Effect of irrigation treatments on soil heavy metals	47

LIST OF FIGURES

Figure		Page
No.		1 age
1	Water resource of Egypt	4
2	Residential water use in Egypt	5
3	Approximate daily water use per person in Egypt 2010	5
4	Per capita fresh water in different years	6
5	Crushed lava rock filter implemented at household level	11
6	Schematic diagram of the graywater treatment MBR	12
7	Experiment setup	13
8	Schematic diagram of recirculating vertical flow constructed wetlands (RVFCW)	15
9	Schematic experimental setup	17
10	General layout of the RBC model system	18
11	Setup of rotating biological contactor simulator	19
12	Schematic diagram of experiment setup (RBC-105 L. capacity	21
13	Schematicdiagram of system components	24
14	Gray water tank	24
15	Electrical motor and power controller	25
16	RBC unit	25
17	Line drawing of RBC	26
18	Discs	27
19	Line drawing of discs	27
20	Sedimentation basin	28
21	Line drawing of sedimentation unit	28
22	Sand filter	29
23	Line drawing of sand filter	29

Figure		D
No.		Page
24	System components	29
25	Epipremnum aureum and Syngonium podophyllum planting	32
26	Syngonium podophyllum and Epipremnum aureum growth in greenhouse	33
27	Syngonium podophyllum irrigated with treated gray water	33
28	Epipremnum aureum irrigated with treated gray water	33
29	Flow chart describing key steps followed during the greenhouse study	34
30	Effect of speed (rpm) on COD removal	39
31	Relation between COD removal efficiency and Re	40
32	Effect of hydraulic retention time on COD removal	41
33	Effect of discs surface area on COD removal	42
34	Removed COD as function of Re and $\frac{HRT \cdot Q}{d^3}$	43
35	Syngonium podophyllum and Epipremnum aureum growth in greenhouse	45
36	Syngonium podophyllum irrigated with treated gray water	46

INTRODUCTION

Water is continuously moved around in the hydrologic cycle. The distribution of water varies between locations, some have plenty of it while others have very little. What is common to all places, is that water is vital for life. Our bodies need at least two liters of water daily. We also need water for other purposes such as washing; cooking, cultivating etc. (Harju 2010).

Water is one of the most abundant resources covering about 70% of the earth's surface with total global water reserves of about 1.4 billion km³, around 97.5% of it is in the oceans and the remaining 2.5% is fresh water. The greater portion of this fresh water is (68.7%) in the form of ice and permanent snow cover in the Antarctic, the Arctic, and in the mountainous regions. Next, 29.9% exists as fresh groundwater. Only 0.26% of the total amount of fresh waters on the Earth are concentrated in lakes, reservoirs and river systems where they are most easily accessible for our economic needs and absolutely vital for water ecosystems. (Shatatet al., 2013)

Egypt is located in a dry climate zone where rainfall is scarce and the desert covers most of the land. In addition to its fixed Nile quota and deep groundwater reservoir which is not renewable and the higher exploitation rate. The water shortage is the main constraint and a major limiting factor facing the implementation of the country's future economic development plans.

Furthermore, climate change is likely to affect water availability to Egypt, although the direction of change is uncertain (**UN Office 2008**). Some experts say that there will be water increase with more rainfall from the Ethiopian plateau and some say there will be a decrease because of water evaporation (**EL-Raey2009**).

The most prominent challenge is that Ethiopia is proceeding with the implementation of the Renaissance 'El Nahda' Dam that represents the greatest threat to Egypt's water security, in light of the available information on the Renaissance Dam which is located on the Blue Nile in western Ethiopia. (El Bedawy 2014).