

Bronchoscopic Endobronchial Application of Tranexamic Acid in Bronchopulmonary Bleeding

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases & Tuberculosis

Presented By

Ibrahim Mohamed Ibrahim ELsaidy

M.B., B. Ch.

Supervised By

Prof.Emad El Din Abdel Wahab Korraa

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Prof. Ashraf Mokhtar Madkour

Professor of Chest Diseases Faculty of Medicine - Ain Shams University

Dr. Iman Hassan Galal

Assistant Professor of Chest Diseases Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

First of all I would like to express my gratitude to **ALLAH**, the source of all our knowledge.

It has been a great honor to proceed into this work under supervision of **Prof. Emad El Din Abdel Wahhab Korraa**, Professor of Chest diseases, Faculty of Medicine; Ain shams University, for his support and kind encouragement and for his guidance in doing this book.

Great thanks to the mastermind Prof. Ashraf Mokhtar Madkour, Professor of Chest diseases, Faculty of Medicine; Ain shams University, for his support and guidance in doing this book.

I would like also to express my deepest gratitude to **Dr. Iman Hassan Galal**, Assistant Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for her guidance and help in doing this work.

Also I would like to thank all the staff members of Chest department, Faculty of medicine; Ain shams University, for their support.

I would like to express my appreciation and gratitute to my dear fellow **Dr.** Ahmed **Tantawy** for his continuous support and guidance.

Last but not least, I would like to thank my family especially my wife for their great effort and support.

Ibrahim Mohamed EIsaidy

سورة البقرة الآية: ٣٢

List of Contents

Title	Page No.	
List of Tables	5	
List of Figures	7	
List of Abbreviations	9	
Introduction	1	
Aim of the Work	4	
Review of Literature		
Pulmonary Bleeding	5	
 Bronchoscopy 	18	
Tranexamic Acid	34	
Patients and Methods	49	
Results	61	
Discussion	86	
Summary	92	
Conclusion	96	
Recommendation	97	
References	98	
Arabic summary		

List of Tables

Table No.	Title Pag	e No.
		_
Table (1):	Causes of hemoptysis	
Table (2):	Diagnostic clues in clinical examination	13
Table (3):	Indications for diagnostic flexible	
m 11 (4)	bronchoscopy	
Table (4):	Indications of therapeutic bronchoscopy	
Table (5):	Contraindications of bronchoscopy	
Table (6):	Preparation for bronchoscopy	
Table (7):	Comparison between different	
T 11 (0)	demographic data of studied patients	
Table (8):	Amount of presenting bleeding in	
T 11 (0)	included patients	64
Table (9):	Descriptive data for Tranexamic acid	0.4
T 11 (10)	group	
	Cold saline and adrenaline group	66
Table (11):	Comparison between bleeding among the	
	two groups as regarding cause diagnosis	07
T 11 (10)	and baseline hemoglobin concentration	67
Table (12):	Baseline bleeding profile of all included	70
T 11 (10)	patients	
Table (13):	Bronchoscopic procedures done for	70
T-1-1- (14).	studied cases.	13
1 able (14):	Amount of blood loss during bronchoscopy	75
Table (15).	(ml) Complications during bronchoscopy	
	Vital data of patients including blood	10
Table (10):	pressure pulse rate and oxygen saturation	
	before and after bronchoscopy	77
Toble (17).	Time of cessation of bleeding.	
	Correlation between amount of initial	00
1 able (10):	bleeding and dose of haemostatic agent	89
Table (10).	Correlation between amount of bleeding	02
1 anie (19):	during bronchoscopy and dose of	
	haemostatic agent used.	82

List of Tables cont...

Table No.	Title	Page No.
	Correlation between time of obleeding and dose of haemos used.	static agent

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Algorithm for diagnosing nonmassiv	e hemoptysis
Figure (2):	Fibreoptic bronchoscope with eyepied	
Figure (3):	Video bronchoscope.	19
Figure (4):	Fiberoptic bronchoscope in chest dep	
0	Shams university.	•
Figure (5):	Fiberoptic bronchoscope at Em	
0	Hospital.	
Figure (6):	A,B) Rigid bronchoscope in	
	University.	
Figure (7):	Ages of cases studied	
Figure (8):	Sex distribution of cases studied	62
Figure (9):	Smoking history among cases studie	d63
Figure (10):	Co morbidities of studied cases	63
Figure (11):	Tranexamic acid group.	65
Figure (12):	Cold saline and adrenaline group	66
Figure (13):	Hemoglobin level of studied cases	68
Figure (14):	Cause of airway bleeding	68
Figure (15):	Diagnosis of airway bleeding	69
Figure (16):	Prothrombin time of studied cases	71
Figure (17):	Partial thromboplastin time of studio	ed cases 71
Figure (18):	INR of studied cases	72
Figure (19):	Bronchoscopic procedures done for s	tudied cases.
		74
Figure (20):	Amount of blood loss during broncho	scopy 75
Figure (21):	Complications during bronchoscopy.	
Figure (22):	Heart rate pre and post bronchoscop	
Figure (23):	Systolic blood pressure before	
	bronchoscopy.	
Figure (24):	Diastolic blood pressure pre	
	bronchoscopy.	
Figure (25):	Oxygen saturation pre and post bron	
Figure (26):	Time of cessation of bleeding	81

List of Figures cont...

Fig. No.	Title	Page No.
Figure (27):	Amount of bleeding during	10
Figure (28):	dose of cyclokapron	bronchoscopy and
Figure (29):	Time of cessation of bleedicyclokapron	ing and dose of
Figure (30):	Time of cessation of bleeding saline and adrenaline.	

List of Abbreviations

Abb.	Full term
ΔRG	Arterial blood gases
	Argon photo coagulation
	Bronchoalveolar lavage
	Blood urea nitrogen
	_
	Complete blood picture
	Charge coupled device Carbon dioxide
	Chronic obstructive airway disease
	Computed tomography
	ɛ-aminocaproic acid
	Electrocardiogram
	Hereditary angioedema
	Human immunodeficiency virus
	High resolution computed tomography
<i>INR</i>	International normalized ratio
O_2	Oxygen
<i>PBF</i>	Pulmonary blood flow
<i>PCP</i>	Pneumocystis carinii pneumonia
<i>PT</i>	Prothrombin time
<i>PTT</i>	Partial thromboplastin time
	Tranexamic acid
<i>TBB</i>	Transbronchial biopsy
	Transbronchial needle aspiration

Abstract

There is also significant statistical difference between systolic blood pressure before and after bronchoscopy only in cold saline and adrenaline group (i.e. systolic blood pressure increased after bronchoscopy in this group).

Dose of TA didn't depend on the amount of initial bleeding.

There is significant positive correlation between amount of blood loss during bronchoscopy and dose of haemostatic agent used to control this bleeding. This correlation is more significant in cold saline and adrenaline group than in cyclokapron group.

There is significant correlation between time of cessation of bleeding and dose of haemostatic agent required to stop this bleeding. This correlation is comparable in both groups.

Bleeding didn't recur in any patient within the period of follow up after the procedure which was 2 weeks.

Keywords: Arterial blood gases- Bronchoalveolar lavage- ε -aminocaproic acid- Electrocardiogram

INTRODUCTION

ndobronchial bleeding could be spontaneous as a complication of wide variety of chest diseases or iatrogenic during interventional procedures. If blood is coughed up it is termed hemoptysis. Massive hemoptysis has been variably defined according to the volume, but its presence implies a potentially life threatening process requiring immediate evaluation and treatment. (1)

The differential diagnosis of hemoptysis includes disorders arising within the airways and the pulmonary parenchyma. Inflammatory processes (e.g., bronchitis and bronchiectasis) and neoplasms are the most common causes of blood arising within the airways. Within the pulmonary parenchyma, common causes are infections, such tuberculosis, pneumonia, aspergillus, or lung abscess. Bleeding may be iatrogenic, as for example after a lung biopsy. Vascular disorders, including pulmonary embolism, arteriovenous malfunctions, and mitral stenosis are also to be considered in the differential diagnosis. Unexplained hemoptysis occurs in COPD and usually is not recurrent. Hemoptysis before middle age usually brings to mind infections; after 40 to 45 years of age, or if there is a history of smoking, bronchogenic carcinoma heads the list. (1, 2)

The evaluation of hemoptysis involves a careful history, physical examination, and a chest radiograph. Initial studies also include a complete blood picture and bleeding profile. Patients

-

with hemoptysis and a history of tobacco smoking, individuals who are more than 40 years of age, or those who experience hemoptysis that lasts for more than 1 week are at greater risk for a worrisome cause and warrant additional studies. A highresolution computed tomography (HRCT) of the chest is usually the next step if the patient has no history of tobacco use or if the plain chest radiograph suggests a parenchymal abnormality, such as bronchiectasis or arteriovenous malformation. Patients with a history of tobacco use or other risk factors for a malignancy warrant fiberoptic bronchoscopy. (3)

Gustav Killian reported his experience with the first bronchoscopy in 1898. Technological advances during the next century facilitated development of bronchoscopy as a pivotal diagnostic and therapeutic tool in pulmonary medicine. The advent of flexible fiberoptic bronchoscopy, pioneered by *Ikeda* in 1967, opened new horizons to clinicians. (4)

Bronchoscopy plays a central role in the evaluation of lung masses and nodules, including those suspicious for bronchogenic carcinoma. It remains the most commonly used modality for the diagnosis of bronchogenic carcinoma and plays an important role in staging of the disease, as well. Simple visualization of lesions is usually not sufficient to determine a precise diagnosis and to guide management. Pathological confirmation through biopsy is frequently required. A variety of instruments with improved distal control (i.e., control beyond the tip of the bronchoscope) have been developed that permit tissue cutting and retrieval of biopsy

specimens. The cutting cups of biopsy forceps could result in tissue trauma and the concomitant risk of bleeding. (4)

One of the most frequently reported complications related to bronchoscopy is hemorrhage. Clinically significant bleeding as a consequence of diagnostic bronchoscopy is reported to occur in 1% to 4% of cases, but it is more likely to occur after tansbronchial biopsy (TBB) and brushings. Bleeding is more common in patients with immunosuppressed state, thrombocytopenia, uremia, liver disease, pulmonary hypertension, concurrent anticoagulation, and those on positive pressure ventilation. (5)

Bronchoscopy may be of value in hemoptysis for several reasons: to identify site of bleeding, to provide endobronchial therapy to reduce or stop bleeding, to clear blood clots that might impair gas exchange, or to place an endoluminal blocking device to prevent further airway occlusion with blood. In attempts to cease bleeding, iced saline or an epinephrine solution can be instilled into a bleeding airway or applied topically onto a proximal bleeding site in attempt to induce vasoconstriction. (6)

Tranexamic acid (TA) is a simple little molecule, just a synthetic derivative of the amino acid lysine. But it's also a potent pro-hemostatic drug that binds plasminogen and plasmin and stops the degradation of fibrin (the stuff in blood clots). (7)

AIM OF THE WORK

The aim of this study is to evaluate the therapeutic effect of endobronchial administration of TA in control of bronchopulmonary bleeding versus administration of cold saline with or without adrenaline.

Chapter One

PULMONARY BLEEDING

Hemoptysis

The coughing up of blood is termed hemoptysis. The material and amount produced varies from mere blood streaking of expectorated sputum to massive volumes of pure blood. (8)

Massive hemoptysis

The term massive hemoptysis has been variably defined according to the volume, but its presence implies a potentially life-threatening process requiring immediate evaluation and treatment. It has been defined by a number of different criteria, ranging from 100 ml to more than 600 ml of blood over a 24 hours period. (9)

False hemoptysis

An initial decision faced by the physician who is told that blood has been coughed up is whether to conclude that the blood is coming from the respiratory tract. Any portion of the respiratory tract can be the source of bleeding including a main bronchus, the lungs, or the nose or throat. On occasion, blood from the nose and throat is inhaled and then expectorated. As long as this possibility is kept in mind, bleeding that originates in the nose, throat, or larynx is not expected to be overlooked. (10)

Hemoptysis versus hematemesis

A matter of great importance is to distinguish hemoptysis from hematemesis (vomited blood). Even if the blood is aspirated