Serum amyloid A level in preeclampsia

Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics & Gynecology**

Presented by

Mohamed Ahmed El-Sayed El-Nems

M.B.B.Ch

Ain Shams University (2009)

Supervised by

Prof. Dr. Mohamed Adel El-Nazer

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Ahmed Hussieny Salama

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2013

سورة البقرة الآية: ٣٢

To Allah goes **My deepest gratitude** and thanks for achieving any work in my life.

I would like to express my deepest gratitude to **Prof. Dr. Mohamed Adel El-Nazer**, Professor of Obstetrics and Gynecology, Ain Shams

University for dedicating so much of his precious time and effort to help

me complete this work. I really appreciate so much his constant guidance
and assistance to me.

Indeed, words do fail me when I come to express my unlimited appreciation to **Dr. Ahmed Hussieny Salama**, Lecturer of Obstetrics and Gynecology, Ain Shams University who was always there to help me, to encourage me and very kindly offer me his valuable remarks in every step of this work.

I can't forget Assistant Prof. Dr./ Mostafa Ibrahim the one who has chosen this interesting subject.

Finally, I am so grateful to **all members of My family** for providing me with great support and I'm most thankful to **My Father** the one who enlightened the path for me.

Contents

Subjects	Page
List of abbreviations	I
• List of Tables	III
• List of figures	IV
• Introduction	1
Aim of the work	4
• Review of literature:	
- Preeclampsia	5
- Serum Amyloid A	38
- New Biochemical markers	59
• Methodology	79
• Results	84
• Discussion	98
Summary & Conclusion	107
• References	109
Arabic summary	

List of Abbreviations

ACOG: American College of Obstetricians and

Gynecologists

ADAM12 : A disintegrin and metalloprotease 12

BP : Blood pressure

CBC : Complete blood count

CK : Creatine kinase

CNS : Central nervous system

CTG : Cardiotocograph

CVP : Central venous pressure

DBP : Diastolic blood pressure

DIC : Disseminated intravascular coagulopathy

ELISA : Enzyme linked immunosorbent assays

FDA : Food and drug administration

Flt : Fms-like tyrosine kinase

HDL : High density lipoprotein

HLA: Human Leukocyte antigen

IUGR: Intrauterine growth resteriction

LCAT : Lecithin cholesterol acyltransferase

LDL : Low density lipoprotein

NK : Natural killer

PIGF: Placental growth factor.

🕏 List of Abbreviations 🗷

PP-13 : Placental protein 13

PTX3 : Pentraxin3

RIA : Radioimmuno assays

SAA : Serum amyloid A

SBP : Systolic blood pressure

SD : Standard deviation

sEng : Soluble endoglin

TNF: Tumor necrosis factor

VEGF : Vascular endothelial growth factor

VLDL : Very low density lipoprotein

List of Tables

Table No.	Title	Page
Table (1):	Patients' characteristics	84
Table (2):	Comparison between the 2 study groups	85
Table (3):	Serum amyloid A level correlations	87
	among the whole study sample	
Table (4):	Group 1 characteristics	89
Table (5):	Serum amyloid A level correlations	90
	among group 1 (cases)	
Table (6):	Comparison between patients with SAA	93
	of \geq 0.8 and patients with SAA of $<$ 0.8.	
Table (7):	Univariate logestic regression analysis	94
Table (8):	Comparison between patients with	95
	adverse outcome (maternal and/or	
	neonatal morbidity and mortality) and	
	patients with no adverse outcome	

List of Figures

Figure No.	Title	Page
Figure (1):	Sequential proposed steps in SAA's	49
	physiological function mobilizing and	
	recycling macrophage cholesterol. Most	
	of the relevant references are cited in the	
	text.	
Figure (2):	Bar diagram showing mean and 95% CI	85
	of serum amyloid A in both study groups.	
Figure (3):	Box-and-whisker plot showing median	86
	serum amyloid A (horizontal bar inside	
	boxes) and its distribution among the 2	
	study groups (p=0.00).	
Figure (4):	Scatter plot showing the correlation	87
	between serum amyloid A and gestational	
	age among the whole study sample	
	(p=0.005).	0.0
Figure (5):	Scatter plot showing the correlation	88
	between serum amyloid A and BMI among the whole study sample	
	(p=0.005).	
Figure (6):	Scatter plot showing the correlation	91
	between serum amyloid A and BMI	
	among group 1 (p=0.018).	
Figure (7):	ROC curve showing the impact of serum	91
	amyloid A level on maternal morbidity	
	(area under the curve=0.76, p=0.003). A	
	cut off value for SAA of 0.8 had	
	sensitivity of 58.3% and specificity of	
	100%.	

≈ List of Figures &

Figure No.	Title	Page
Figure (8):	ROC curve showing the impact of serum	92
	amyloid A level on neonatal	
	morbidity/mortality (area under the	
	curve=0.773, p=0.001). A cut off value	
	for SAA of 0.8 had sensitivity of 63.6%	
	and specificity of 100%.	
Figure (9):	ROC curve showing the impact of serum	92
	amyloid A level on combined maternal	
	and/or neonatal morbidity/mortality (area	
	under the curve=0.8, p=0.0001). A cut off	
	value for SAA of 0.8 had sensitivity of	
	66.6% and specificity of 100%.	
Figure (10):	Serum amyloid A (mean, 95% CI) among	96
	patients with and without adverse	
	outcome (any maternal or neonatal	
	morbidity/mortality).	
Figure (11):	Box-and-whisker plot showing median	97
	and distribution of serum amyloid A	
	levels (horizontal bar inside	
	boxes=median) among patients with and	
	without adverse outcome (any maternal	
	or neonatal morbidity/mortality),	
	p=0.009.	

Introduction

Hypertensive disorders with pregnancy are one of the main reasons of maternal, fetal and neonatal morbidity and mortality. As preeclampsia is a multisystem disorder with different clinical characteristics, prevention, early management of this disease requires a close interdisciplinary cooperation^[1].

It affects about 5-10% of all pregnancies and is a major cause of maternal, fetal and neonatal mortality and morbidity³ as amniotic fluid levels, decreased fetal growth, placental abruption, and intrauterine fetal demise^[2].

The etiology of preeclampsia is unknown but thought to be related to placental hopxia^[3]. Many theories have attempted to explain why preeclampsia arises, and have linked the syndrome to the presence of the following:

- Endothelial cell injury.
- Immune rejection of the placenta.
- Compromised placental perfusion.
- Altered vascular reactivity.
- Imbalance between prostacyclin and thromboxane.
- Decreased glomerular filtration rate with retention of salt and water.
- Decreased intravascular volume.
- Increased central nervous system irritability [4]

Preeclampsia is a syndrome, which affects virtually all-maternal organ systems ^[5], it is a multisystem disorder and lead to a lot of cellular death and endothelial injury.

Dysfunction of endothelial cells can contribute to inappropriate vasoconstriction and platelet aggregation which are early signs of atherosclerosis, hypertension and coronary vasopasm^[6].

Serum amyloid A (SAA) is one of the acute phase proteins predominantly produced and secreted by hepatocytes. Other cells including lymphocytes, monocytes, and macrophages can also produce this protein.

The induction of SAA synthesis is triggered by a number of cytokines, chiefly IL-6 and TNF- predominantly released from macrophages and monocytes at the inflammatory sites^[7]. The synthesis is influenced by steroid hormones and adipose tissue (due to IL-6 production in the adipocytes)^[8,9]. Increased baseline level of SAA analyzed by high-sensitivity assays has been recognized as markers of vascular wall inflammation and as clinical marker for the prediction of cardiovascular events^[10].

Since preeclampsia is associated with widespread endothelial dysfunction, proposed to be provoked by an increased maternal systemic inflammatory response, the

maternal plasma levels of SAA might be expected to be increased when compared to normal pregnancy levels.

The maternal plasma levels of SAA in normal pregnancy could differ from non-pregnant levels due to increased hormone levels, increased adipose tissue and/or secondary to modifications of the inflammatory response in normal pregnancy^[11].

Aim of the work

The aim of this study is to correlate plasma levels of serum amyloid A protein in pregnant women with preeclampstic women inorder to get a new biochemical marker for preeclampsia and explore possible correlation with maternal and neonatal morbidity & mortality.

Preeclampsia

Overview

Preeclampsia is a disorder of widespread vascular endothelial malfunction and vasospasm that occurs after 20 weeks' gestation and can present as late as 4-6 weeks postpartum. It is clinically defined by hypertension and proteinuria, with or without pathologic edema.

In developing nations, the incidence of the disease is reported to be 4-18%,^[12, 13] with hypertensive disorders being the second most common obstetric cause of stillbirths and early neonatal deaths in these countries.^[14]

Medical consensus is lacking regarding the values that define preeclampsia, but reasonable criteria in a woman who was normotensive before 20 weeks' gestation include a systolic blood pressure (SBP) greater than 140 mm Hg and a diastolic BP (DBP) greater than 90 mm Hg on 2 successive measurements, 4-6 hours apart. Preeclampsia in a patient with preexisting essential hypertension is diagnosed if SBP has increased by 30 mm Hg or if DBP has increased by 15 mm Hg.

Classification and Characteristics of Hypertensive Disorders

Preeclampsia is part of a spectrum of hypertensive disorders that complicate pregnancy, the classification is as follows^[15]:

- Gestational hypertension
- Chronic hypertension
- Preeclampsia/eclampsia
- Superimposed preeclampsia (on chronic hypertension)

Although each of these disorders can appear in isolation, they are thought of as progressive manifestations of a single process and are believed to share a common etiology.

Gestational hypertension

The characteristics of gestational hypertension are as follows:

- BP of 140/90 mm Hg or greater for the first time during pregnancy.
- No proteinuria.
- BP returns to normal less than 12 weeks' postpartum.
- Final diagnosis made only postpartum.