

Ain Shams University
Faculty of Engineering
Department of Architecture Engineering

Towards Enhancing Building Information Modeling Implementation in the Egyptian AEC industry

A thesis Presented in Partial Fulfillment of the Requirements for Master of Science Degree in Architecture Engineering

By

Nouran Mohamed Elsaid Soliman Elabd

BSc in Architecture 2012- Ain Shams University

Under Supervision of

Professor Dr. Samir Sadek Hosny

Professor of Architecture Ain Shams University

Assoc. Prof.Dr. Laila Mohamed khodeir

Assoc. Professor of Architecture
Ain Shams University

Dr. Sherif Morad AbdelKader AbdelMohsen

Assistant Professor of Architecture
Ain Shams University

Ain Shams University Faculty of Engineering Department of Architecture Engineering

Towards Enhancing Building Information Modeling Implementation in the Egyptian AEC industry

Submitted by: Nouran Mohame	ed Elsaid Soliman Elabd	
Degree: Master of Science Degr	ree in Architecture	
Examiners' Committee		Signature
Professor Dr.Basel Ahmed Kam	nel	
Professor of Architecture Department of Architecture Faculty of Engineering - Cairo U	niversity	
Professor Dr. Yasser Mohamed	Mansour	
Professor of Architecture		
Department of Architecture		
Faculty of Engineering - Ain Sha	ms University	
Professor Dr. Samir Sadek Hosi	ny	
Professor of Architecture		
Department of Architecture		
Faculty of Engineering - Ain Sha	·	
Assoc. Professor Dr. Laila Moha		
Department of Architecture		
Faculty of Engineering - Ain Sha	ms University	
Post Graduate studies		Approval Stamp
Date of Thesis Defence	The Research was approved on	
//	/	
Faculty Council Approval:	University Council Approval:	

..../..../....

.../..../....

Disclaimer

This thesis is submitted as partial fulfillment of M.Sc degree in Architecture, Faculty of Engineering, Ain Shams University.

The work included in this thesis was carried out by the author during the period from 2014 to 2016, and no part of it has been submitted for a degree or qualification at any other scientific entity.

The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others.

Name: Noura	n Mohamed Elsaid Soliman Elabo
Signature:	
Date:	

Acknowledgement

First, I would like to express my gratitude to my supervisors: *Prof. Dr. Samir Sadek* for his continuous support and encouragement; Assoc. *Prof. Dr. Laila Khodeir* for her valuable feedback and guidance -She was the first to put me on this track and I would like to thank her for believing in me- *Dr. Sherif Morad* for his insightful comments and tolerance. I pride myself on being one of their students so thank you for giving me this opportunity.

To my parents and my husband who supported me on every step on my way and whom without I would never have been able to finish my thesis.

I would like to thank the team work and the manager at CCC (Consolidated Contractors Company) for the motivation and support, special thanks do to Eng.Ahmed Ezzat for guiding my research and giving me from his precious time for interviews to make the analytical studies meet the professional career and get out with real results.

And at last but not least, i would also like to thank my brother Sherief Elabd who was always willing to help and give his best suggestions

Abstract

Since the expression "Building Information Modeling" (BIM) was initially presented in the Engineering and Construction AEC industry in the most recent decade; it has changed numerous parts of the design, construction, and operation of a building. BIM is a Middleware; connector represents the advancement and utilization of PC .

BIM has various frameworks which have been conducted by the pioneers in BIM industry to enhance the BIM process. Then there was a study of the reflection of those frameworks on the Egyptian AEC industry to overcome the threats that prevent Egypt from applying BIM technology more broadly.

In addition, a comparison is conducted between the successful countries which implemented BIM in their projects, and managed to enhance their adoption through studying their local challenges and targets then made strategies and standards to overcome those threats, and then applied successful actions which can match with the Egyptian industrial requirements.

This research is expected to define the challenges which are facing the Egyptian industry to apply BIM and the potential capabilities of solving those problems. To acquire the vital information to carry on this research a questionnaire was created and distributed in the AEC community. The reason for the study was to see how experts consider BIM as a device in the fields of design and construction in general and in the Egyptian industry particularly.

Finally several case studies are discussed, analyzed and compared, in order to explore the importance of using BIM and the effect of different parameters on implementing BIM, which helped in proposing BIM framework with evaluating matrix contains attributes to measure its success and to help the Egyptian companies make real business decisions about enhancing BIM implementation through this framework.

Keywords

Building Information Modeling- AEC (Architecture, Engineering, Construction) Industry-BIM Standards-Egyptian Firms-BIM Frameworks-Return on Investment-SWOT Analysis-Man Hours

List of Acronyms

ADA	Arriyadh Development Authority
AEC	Architecture, Engineering, Construction
AIA	American Institute of Architects
BDS	Building Depiction System
BEM	Building Energy Modeling
BHS	Baggage Handling System
BIM	Building Information Modeling
BOQ	Bill of Quantity
Brep	Boundary representation
CAD	Computer Aided Design
CBA	cost-Benefit Analysis
CSG	Constructive solid geometry
DFMA	Designed for Manufacture and Assembly
DIS	Draft International Standards
FM	Facility Management
GPA	Government Property Agency
HA	The Housing Authority
HVAC	Heating, Ventilation, and Air Conditioning
IFC	Industry Foundation Classes
IPD	Integrated Project Delivery
LOD	Level of Detail
MEP	Mechanical, Electrical, Plumbing
NBIMS-US	National Institute of Building Information Modeling Sciences –
	United States
nD	"n" Is the Unspecified Number of Dimensions, Essentially Forming
	An (n) Model
PAS	Publically Available Standards
PM	Project Manager
RCBA	Risk & Cost-Benefit Analysis
RFI	Request For Information
ROI	Return on Investment
RPTP	Riyadh Public Transport Project
QS	Quantity Surveying
WBS	Work Breakdown Structure
2D	Two-Dimensional
3D	Three-Dimensional
4D	Four-Dimensional 3D+Schedule Related Information (Time)
5D	Five-Dimensional 3D+ (Time+Cost)
6D	Six-Dimensional 3D+All Aspects of Project Lifecycle
	Management Information

List of Definitions

3D Parametric Modeling	(3D Model with Attributes) D Parametric Modeling (3D Model with Attributes) Model elements not only include visual aspects of the building elements they represent, but also have the properties (or knowledge) of the solids they represent.
BIM	Building Information Modeling is the development and use of a computer software model to simulate the construction and operation of a facility. The resulting model, a Building Information Model, is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data appropriate to various users' needs can be extracted and analyzed to generate information that can be used to make decisions and improve the process of delivering the facility.
4D Model	Model Term used to describe the linkage of a schedule to a model—essentially turning on model elements in the order in which they are built.
5D Model	Model Term used to describe the linkage of estimating software to a model—element quantities are downloaded from the model database and imported directly into estimating software.
Construction	The process of ensuring that the various elements of a building
Coordination	are constructed in a sequence that allows the various elements of the building to be.
Coordination Model	A Building Information Model that is developed from a completed design. The creation of the model is an interpretation of a design as opposed to the creation of a design.
Design Coordination	The process of ensuring that the various elements of the design (architectural, structural, electrical, etc.) fit together and complement one another.
Interoperability	(as it relates to BIM) The ability of data rich models to share valuable data, either through import or export.
Integrated project delivery (IPD)	a collaborative alliance of people, systems, business structures and practices into a process that harnesses the talents and insights of all participants to optimize project results, increase value to the owner, reduce waste, and maximize efficiency through all phases of design, fabrication, and construction.
Obstacles to standard implementation of BIM technology	Necessity to concurrently perform the activities of design and construction; divergent protocols of data input and extraction; the lack of an appropriate software platform to catalog all aspects of the project; and the lack of sufficient infrastructure to provide access to the model by all members of the project team.

Table of Contents

1 Mode	CHAPTER1: INTRODUCTION TO BUILDING INFOR	
MODE	LING BASICS	3
1.1	Introduction	3
1.2	Historical Background of Building Information Modeling	4
1.2.1		
1.3	Progress of Building Information Modeling Software	5
1.3.1	ArchiCAD Software	
1.3.2	Revit Software	6
1.3.3	Bentley Systems	
1.4	Building Information Modeling Basics	10
1.4.1	Building Information Modeling conception and definition	11
1.4.2	Building Information Modeling Characteristics	
1.4.3	Building Information Modeling Advantages	13
1.4.4	Building Information Modeling Disadvantages	15
1.4.5	Building Information Modeling Benefits	16
1.4.6	Building Information Modeling Risks:	17
1.4.7	Building Information Modeling Challenges	18
1.4.8	BIM Environment Interoperability	23
1.4.9	BIM and Integrated Project Delivery	27
1.5	Concluding Remarks	30
2	CHAPTER2: ASSESSMENT OF BIM FRAME	
AND S	STANDARDS WORLDWIDE	32
2.1	Introduction	32
2.2	Frameworks for Building Information Modeling	33
2.2.1	Succar BIM Framework	
2.2.2	Autodesk Framework	
2.2.3		

2.3	Comparison between the previous frameworks	43
2.4	Assessment of BIM Frameworks and Standards Worldwide	45
2.5	Concluding Remarks	55
3	CHAPTER3: ANALYSIS OF CURRENT PRACTICE O	
APP	LICATION IN THE EGYPTIAN AEC INDUSTRY	59
3.1	Introduction	59
3.2	Questionnaire Design	60
3.2.	1 Identify the Respondents' Profile	60
3.2.	2 Use of BIM Application in the Company	61
3.2.	3 Measure the extent of the spread of BIM in Egypt	62
3.2.	4 Section 4: Solutions Needed to Expand the Use of BIM	62
3.2.	.5 Section 5: Evaluation Matrix for BIM Process (Pros and Cons)	63
3.2.	6 Section 6: Futuristic Vision of BIM Improvement	64
3.3	Sample Population	64
3.4	Questionnaire Results	65
3.4.	1 Analysis of "1" Section Results	66
3.4.	2 Analysis of section "2" Results	67
3.4.	3 Analysis of Section "3" Results	72
3.4.	4 Analysis of Section "4" Results	74
3.4.	.5 Analysis of Section "5" Results	76
3.4.	6 Analysis of Section "6" Results	80
3.5	Concluding Remarks	82
3.5.	1 The Positive Attributes	82
3.5.	2 The Negative Attributes	85
4	CHAPTER4: CASE STUDIES ANALYSIS AND THE PR	OPOSED
FRAI	MEWORK	
4.1	Introduction	91
4.2	Criteria of the Case Studies Selection Approach	91
4.2.	1 The Case Studies Attributes	92
4.3	Case Study no.1: Midfield Terminal Building of the Abu Dhabi Airport,	, UAE96

4.3.1	Attribute (3): Project Information	97
4.3.2	2 Attribute (4): Project Requirements	99
4.3.3	3 Attribute (5): Challenges Faced	99
4.3.4	Attribute (6): BIM Implementation	99
4.3.5	5 Attribute (7): Project Management	107
4.3.6	5 Attribute (8): Sustainability (BEM)	108
4.4	Case study 2: Riyadh Metro Project, Saudi Arabia	109
4.4.1	Attribute (3): Project information	110
4.4.2	2 Attribute (4): Project requirements	111
4.4.3	3 Attribute (5): Challenges	111
4.4.4	Attribute (6): BIM Implementation (Process implementation)	113
4.4.5	Attribute (7): Project management	118
4.5	Case study3:The Nile Corniche Project in Cairo, Egypt	121
4.5.1	Attribute (3): Project Information	121
4.5.2	2 Attribute (4): Project requirements	122
4.5.3	3 Attribute (5): Challenges Faced	122
4.5.4	Attribute (6): BIM implementation	123
4.5.5	5 Attribute (7): Project Management	128
4.6	Conclusion	130
4.7	The Proposed Framework	133
4.7.1	Generation process of the framework	133
4.7.2	2 Elements of the Framework	134
4.7.3	B Evaluation of BIM framework implementation by the user group	137
4.7.4	Limitation of the Framework	138
CONC	LUSION AND RECOMMENDATIONS	141
5	CONCLUSION AND RECOMMENDATIONS	142
5.1	Conclusion	142
5.2	Recommendation	144
DEED	ENCES	146
NEFK	ENCES	140

List of Figures

Figure 1-1 Courtesy of The Business Value of BIM in North America, The Business
Value of BIM in North America:Multi –Year Trend Analysis and User Ratings
SmartMarket Report,McGraw-Hill Construction,20124
Figure 1-2Example on the project which used Revit (The Freedom Tower used 3D
model instead of working on 2D, CTBUH (Council on Tall Buildings and Urban
Habitat)Journal 2011 Issue III
Figure 1-3 Screen shot of project using Bentley software
Figure 1-4 BIM dimensionality, hierarchy from 3D BIM model till 7D BIM model 13
Figure 1-5 A graphical representation shows the difference between the tow
processes, By having BIM model all the data will be extracted by click but in the
CAD process all the data has to be available to extract CAD model15
Figure 1-6 Respondent areas of operation, Building smart 201123
Figure 1-7 Industry Foundation Classes (IFC) interoperability, Tekla - Revit BIM
Workflow Example , http://www.dowcotech.com/tekla_revit_interoperability
<2014>24
Figure 1-8 Interoperability environment components24
Figure 1-9 3D View and Section Views of the G.G. Brown Building in Autodesk Revit
2012, to examine potential interoperability weaknesses of the IFC format 25
Figure 1-10 Error window appearing after importing IFC file to Revit 2011 26
Figure 1-11 BIM model after importing IFC file to Autodesk Revit 201126
Figure 1-12 Changes to the AEC industry after IPD approach28
Figure 1-13 building information modeling road map, integrated delivery 28
Figure 2-1: the framework includes three interlocking Knowledge nodes, Bilal
Succar, Building information modeling framework,200934
Figure 2-2 overlapping between the three nodes, Bilal Succar, Building information
modeling framework,200936
Figure 2-3BIM business transformation, show the integration of the three stages, A
BIM business transformation, Autodesk, 201537
Figure 2-4key BIM implementation areas for generating change in an organization,
A BIM business transformation, Autodesk, 2015
Figure 2-5 BIM implementation wheel, A BIM business transformation,
Autodesk,2015
Figure 2-6 Visualized BIM implementation at the corporate level, Measuring BIM
performance: Five metrics,201241
Figure 2-8The hierarchy of the National BIM Standard-United States, , National
Institute of Building Sciences, 2016

Figure 2-9 Proposed Steps for Implementing BIM by the Chinese Government,
Government roles in implementing building information modeling systems55
Figure 2-10 analysis of BIM framework and standards components 56
Figure 2-11 Assessment of BIM Standards Worldwide 57
Figure 3-1Survey methodology process, generated by the researcher
Figure 3-2 Respondent's profession
Figure 3-3Number of years respondents has worked in the AEC industry as a
Professional
Figure 3-4 Type of projects respondent's company perform work on
Figure 3-5Number of employees of respondents' company
Figure 3-6how often the respondent implemented BIM69
Figure 3-7 Number of years that the respondent's company has been using BIM.70
Figure 3-8 the phase that the company use Energy analysis process70
Figure 3-9 Availability of company's training/education of respondents71
Figure 3-10 the respondent's opinion about BIM trainings
Figure 3-11 The budget needed to implement BIM in respondent's
project(including training stuff)
Figure 3-12 the activities which the respondents are doing through using BIM 73
Figure 3-13the phases which the respondent's company use BIM in any project 73
Figure 3-14 this chart show if the respondents are facing any problems during
importing model from Revit /Archicad program to the next program in the BIM
process
Figure 3-15 the effect of interoperability problems on the application of BIM75 $$
Figure 3-16the respondent's opinion about if the use of BIM on their projects is a
stakeholder lead requirement75
Figure 3-17 the respondent's opinion about the stakeholder satisfaction from the
BIM product
Figure 3-18 the respondent's opinion about which factor behind not implementing
in Egypt77
in Egypt

Figure 3-24Comparison between the stakeholder request to use BIM and if t	hey
become satisfied from the product	84
Figure 3-25the advantages of using BIM in a project	85
Figure 3-26the reasons behind why BIM is not being implemented in Egypt	86
Figure 3-27the main problem of not using the BEM in the respondent's proje	ct
which is the client demand	87
Figure 3-28 the questionnaire analysis	89
Figure 4-1 the case studies attributes	94
Figure 4-2: BIM Staff allocation in Projects and Offices	95
Figure 4-3: Terminal Building of the Abu Dhabi Airport,3D shot	96
Figure 4-4: Terminal Building of the Abu Dhabi Airport,3D shot	97
Figure 4-5Main components of Midfield Terminal Building of the Abu Dhabi	
Airport, UAE	98
Figure 4-6 3d model illustrate the different facades of the project	98
Figure 4-7 Member marks facilitate updating the drawing and facilitate the de	tection
of clashes	100
Figure 4-8Visualization of Infrastructure Master Plan by using Bentely progra	ım 101
Figure 4-9 Progressive interface, Infrastructure Master Plan by using Bentley	
program	101
Figure4-10 Clashes Tag with the red color shows the clashes detected at the I	MEP
systems, which will lean the process, Clash detection with navigator through	_
NaviseWorks	
Figure 4-11 Live photo of the collaboration I-Room	
Figure 4-12 Coordination between team members through I- Room	
Figure 4-13 Collaboration through Web Access	
Figure 4-14 Collaboration through Markup by Remote Third Party	104
Figure 4-15 Enforced Workflow ,Workflow in Project Wise Explorer, CCC	
documents	
Figure 4-16 BIM hours allocation over services (Total 16098 hrs)	
Figure 4-17Internal logistics, Site Condition on October 10th 2014	106
Figure 4-18Project Time Schedule	108
Figure 4-19Filling for Suspended Slabs and Slabs on grade	109
Figure 4-203D model of the Riyadh Metro Project, Saudi Arabia	109
Figure 4-213D model of the Riyadh Metro Project, Saudi Arabia	110
Figure 4-22the external shell of the metro station	112
Figure 4-23the metro extend 176 km with 6 lines which make challenges	112
Figure 4-24 The progress of different activities which is the responsibility of the	ie
foreman	115

Figure 4-25Section of Riyadh metro project	115
Figure 4-26Visualization of the 3d model	116
Figure 4-27Clash detection between stairs and structure system	.116
Figure 4-28the design for the external envelope which consists of steel diagric	and
one entire glazed "eye"	
Figure 4-29Manhours calculation report	
Figure 4-30Manual labor correction flow chart	.120
Figure 4-31Progress &performance curves ,total manual construction (all deliv	
areas	
Figure 4-32 3d showing the The Nile Corniche Project in Cairo, Egypt	.122
Figure 4-33Project phases and supported processes	.124
Figure 4-34Quantification from the 3D Model	.124
Figure 4-35Quantification from the 3D Model	.125
Figure 4-36Verification of the Construction Program	.125
Figure 4-37Usage of the 4D Model for Progress and Cost monitoring	125
Figure 4-38the hierarchy of collaborative BIM project team	.126
Figure 4-39Collaboration in the project	.127
Figure 4-40simulation during the project through different programs	.127
Figure 4-41Various project phases are integrated in database	128
Figure 4-42Man hours management for the three parts of the tower	129
Figure 4-42 generation process of the framework	.133
Figure 4-44 the different sizes of the nodes that represent the framework	
Figure 4-45Inputs and outputs of the framework	.137
Figure 4-46 the arrow represent the loop from the performance node back ag	ain
to the government	137
Figure 4-47 the proposed BIM framework for enhancing the implementati	on of
BIM in Egypt, generated by the researcher1	.40